Omega Riding Toy LTU 101 User Manual

Where Do I Find Everything I Need for  
Process Measurement and Control?  
OMEGA…Of Course!  
Users Guide  
TEMPERATURE  
ߜ
 
Thermocouple, RTD & Thermistor Probes,  
Connectors, Panels & Assemblies  
Wire: Thermocouple, RTD & Thermistor  
Calibrators & Ice Point References  
Recorders, Controllers & Process Monitors  
Infrared Pyrometers  
ߜ
 
ߜ
 
ߜ
 
ߜ
 
PRESSURE, STRAIN AND FORCE  
ߜ
 
ߜ
 
ߜ
 
ߜ
 
Transducers & Strain Gauges  
Load Cells & Pressure Gauges  
Displacement Transducers  
Instrumentation & Accessories  
FLOW/LEVEL  
ߜ
 
ߜ
 
ߜ
 
ߜ
 
Rotameters, Gas Mass Flowmeters & Flow Computers  
Air Velocity Indicators  
Turbine/Paddlewheel Systems  
Totalizers & Batch Controllers  
pH/CONDUCTIVITY  
ߜ
 
ߜ
 
ߜ
 
ߜ
 
pH Electrodes, Testers & Accessories  
Benchtop/Laboratory Meters  
Controllers, Calibrators, Simulators & Pumps  
Industrial pH & Conductivity Equipment  
IP  
68  
DATA ACQUISITION  
ߜ
 
ߜ
 
ߜ
 
ߜ
 
ߜ
 
Data Acquisition & Engineering Software  
Communications-Based Acquisition Systems  
Plug-in Cards for Apple, IBM & Compatibles  
Datalogging Systems  
Recorders, Printers & Plotters  
HEATERS  
ߜ
 
ߜ
 
ߜ
 
ߜ
 
ߜ
 
Heating Cable  
NRTL/C  
Cartridge & Strip Heaters  
Immersion & Band Heaters  
Flexible Heaters  
LTU-101, LVU-150, LVC-152  
LVC-100 & LVF-210 Series  
Powered Level Switch  
Laboratory Heaters  
ENVIRONMENTAL  
MONITORING AND CONTROL  
ߜ
 
ߜ
 
ߜ
 
ߜ
 
ߜ
 
ߜ
 
Metering & Control Instrumentation  
Refractometers  
Pumps & Tubing  
Air, Soil & Water Monitors  
Industrial Water & Wastewater Treatment  
pH, Conductivity & Dissolved Oxygen Instruments  
M-3949/0403  
T h e s e p r o d u W c t A s R a N r e I N n G o t : d e s i g n e d f o r u s e i n , a n d s h o u l d n o t b e u s e d f o r , h u m a n a p p l i c a t i o n s .  
a n , s d n i r e a t s n e o r v c e s t h e r i g h t t o a l t e r s p e c i f i c a t i o n s w i t h o u t n o t i c e .  
w i t h o u t t h e p r i o  
r e d o u r c e d t o a n y t r a e n l e s c l a t r t o e n d i , c m r e e p d r i o u d m u c c o o e r p d m i , e a d c , h i n e - r e a d  
© C o p y r i g h t 2 0  
e r r o r s i t  
T h e i n f o r m a t i o n c o n t a i n e d i n t h i s d o c u m e n t i s b e l i e v e d t o b e c o r r e c t , b u t O M E G A E n g i n e e r i n g , I n c . a c c e p t s n o l i a b i l i t y f o r a n y  
a d d t h e C E m a r k t o e v e r y a p p r o p r i a t e d e v i c e u p o n c e r t i f i c a t i o n .  
i s c o n s t a n t l y p u r s u i n g c e r t i f i c a t i o n o f i t s p r o d u c t s t o t h e E u r o p e a n N e w A p p r o a c h D i r e c t i v e s . O M E G A w i l l  
I t i s t h e p o l i c y o f O M E G A t o c o m p l y w i t h a l l w o r l d w i d e s a f e t y a n d E M C / E M I r e g u l a t i o n s t h a t a p p l y  
O M E G A i s a r e  
. O M E G A  
T h i s a f f o r d s o u  
p s ’ o l i c y i s O t o M m E G a k A e r u n n i  
e - m a i l : s a l e s @ o m e g a . f r  
e - m a i l : s a l e s @ o m e g a . c o . u k  
0 8 0 0 - 4 8 8 - 4 8 8  
e e i n o U T l n l F i t r e d K i n g d o m :  
r e l a t i v e t o t h e p r o d  
R e p 3 a . i r i n s t r u c t i o n s  
w a r r a n t y  
M . o 2 d e l a n d s e r i a l n u  
w a s P U R C H A S E D ,  
P u r 1 c . h a s e O r d e r n u  
e e i n o F T l r l a F n r c e : 0 8 0 0 4 6 6 3 4 2  
A X : + 3 3 ( 0 ) 1 3 0 5 7 5 4 2 7 l : e + T 3 3 ( 0 ) 1 6 1 3 7 2 9 0 0  
7 8 2 8 0 G u y a n c o u r t , F r a n c e  
e u J a c 1 q 1 , u r e s C a r t i e r  
r e l a t i v e t o t h e p r o d u c t .  
R e p 3 a . i r i n s t r u c t i o n s a n d / o r s p e c i f i c p r o b l e m s  
F
, a n d  
M o 2 d . e l a n d s e r i a l n u m b e r o f t h e p r o d u c t , a n d  
o f t h e r e p a i r  
d r e r O n u m b e r . P t o 1 u r c h o a v s e r t h e C O S T  
A F X : + 4 4 ( 0 ) 1 6 1 7 7 7 6 6 2 2  
l : e + T 4 4 ( 0 ) 1 6 1 7 7 7 6 6 1  
U n i t e d K i n g d o m  
,
1
F r a n c e :  
O M E G A :  
O M E G A :  
f o l l o w i n g i n f o r m  
R E T U R N S , p A l e R W a R s e A h N F a O T v R Y e t h e  
M a n c h e s t e r M 4 4 5 B D  
N o r t h b a n k , I r l a m  
e c h n o l o g y C e R n i t v r e r B e n d T  
O n e O m e g a D r i v e  
l o w i n g i n f o r m a t i o n a v a i l a b l e B E F O R E c o n t a c t i n g  
O M E G A f o r c u r r e n t r e p a i r c h a r g e s . H a v e t h e f o l -  
e - m a i l : i n f o @ o m e g a s h o p . c z  
e e : 0 8 o 0 T l 0 l - F 1 r - 6 6 3 4 2  
4 2 + 0 : X ( 0 A ) F 5 9 6 3  
4 2 + 0 : l ( e 0 T ) 5 9 6 3 1  
c o n s u A l t I R S R , E P  
A R R A N N T Y O N F - W O R  
e
4
1 1 1 1  
1 8 9 9  
t o p r e v e n t b r e a k  
T h e p u r c h a s e r i s r e s p o n a s n i b y l e c o f o r r r e s s h p i p o p n i d n  
Y S ) . T D h E e L a A s s i g n e d A  
t i f i e d  
I S O 9 0 0 2 C e r  
U n i t e d K i n g d o m :  
´ , C z e c h R e p u b l i c  
F r y s t a t s k a 1 8 4 / 4 6 , 7 3 3 0 1 K a r v i n a  
C z e c h R e p u b l i c :  
V O I D P R O C E S S I N G  
T M A E R N T ( I N V O I R C D E E D R E T P O  
A I N A N A U T H O R I Z E D R E T U R N ( A R )  
A
’ S C U S T O M E R S E R  
N U M B E R F R O M  
e - m a i l : i n f o @ o m e g a . d e  
e e i n o G T l e l r F m r a n y : 0 8 0 0 6 3 9 7 6 7 8  
A F X : + 4 9 ( 0 ) 7 0 5 6 9 3 9 8 - 2 9  
l : e + T 4 9 ( 0 ) 7 0 5 6 9 3 9 8 - 0  
o n n , G e r m D a n e y c k e n p f r  
D a i m l e r s t r a s s e 2 6 , D - 7 5 3 9 2  
A N Y P R O D U C R T E ( T S U ) R T N O I N O G M E G  
e - m a i l : s a l e s @ o m e g a e n g . n l  
e e i n o B T l e l n F e r l u x : 0 8 0 0 0 9 9 3 3 4 4  
D i r e c t a l l w a r r a  
I N / Q U I R I E S  
R E T U R N R E Q U E S T S  
A X : + 3 1 ( 0 ) 2 0 6 4 3 4 6 4 3 l : e + T 3 1 ( 0 ) 2 0 3 4 7 2 1 2 1  
F
.
s u c h a m a n n e r  
h o l d O M E G A h a  
T h e N e t h e r l a n d s  
P o s t b u s 8 0 3 4 , 1  
B e n e l u x :  
A m s t e l v 1 e 8 e 0 n L A  
, p u r c h a s e r w i l l i n d e m n i f y O M E G A a n d D / I S C L A I M E A R R l R a n A g N u T a Y g e , a n i n d , o a u d r d b i t a i o s n i c a l W l y  
G e r m a n y / A u s t r i a :  
, O M E G A a s s u m e s n o r e s p o n s i b i l i t y a s s e t f o r t h  
m e d i c a l a p p l i c a  
a p p l i c a t i o n s o r u  
C o m p o n e n t ” u n  
C O N D I T I O N S : E  
n o e v e n t s h a l l  
o t h e r w i s e , s h a  
,
S e r v i c i n g E u r o p e :  
C A B L E : O M E G A  
i n f o @ o m e g a . c o m . m x  
e - m a i l : e s p a n o l @ o m e g a . c o 1 m / - 8 0 0 - U S A - W H E N  
T E L E X : 9 9 6 4 0 4 E A S Y L I N K : 6 2 9 6 8 9 3 4  
E n g i n e e r i n g S e r v i c e : 1 - 8 0 0 - 8 7 2 - 9 4 3 6  
C u s t o m e r S e r v i c e : 1 - 8 0 0 - 6 2 2 - 2 3 7 8  
S a l e s S e r v i c e : 1 - 8 0 0 - 8 2 6 - 6 3 4 2  
®
, n e g l i g e n c e , i n d e m n i f i c a t i o n , s t r i c t l i a b , i w l i h t y e t o o h r r e d r e b r a s e d o n  
p u r c h a s e r s e t  
A F X : ( 0 0 1 ) 2 0 3 - 3 5 9 - 7 8 0 7  
1 / - 8 0 0 - 6 2 2 - B E S T  
1 / - 8 0 0 - T C - O M E G A  
®
: T h e r e m e d i e s o f T I A O N O F L I A B I L I T Y  
I C T U R L A A P R P U R P O S E  
A R W R A N T I E S I N  
o l : ( 0 0 1 ) 2 E 0 n 3 - 3 E 5 s 9 p - a 7 n 8 0 3  
®
~
A B I L I T Y A N D F I T N E S S F O A R R A R A N T Y O F M E R C H A N T  
M e x i c o :  
a n d C U a S n A a d a :  
T O F T I T L E , A N D A L L I M P L I E D  
A R R A N T I E S O R R E P R E S E N T  
T S O E V E R , E X P R E S S O F O R A N I M Y P K L I N E D D ,  
s p e c i f i e d a n d  
F o r i m m e d i a t e t e c h n i c a I l O T o N A r S a p p l i c a t i o n a s s i s t a n c e :  
e i t h e r v e r b a l  
t h a t r e s u l t f r o  
e - m a i l : i n f o @ o m e g a . c o m  
A F X : ( 2 0 3 ) 3 5 9 - 7 7 0 0  
e l T : ( 2 0 3 ) 3 5 9 - 1 6 6 0  
e - m a i l : i n f o @ o m e g a . c a  
A F X : ( 5 1 4 ) 8 5 6 - 6 8 8 6  
e l T : ( 5 1 4 ) 8 5 6 - 6 9 2 8  
L a v a l ( Q u e b e c ) H 7 L  
9 7 6 B e r  
n e i t h e r a s s u m  
, O M E G A  
O M E G A i s p l e  
C o m p o n e n t s w h  
t i o n ; i m p r o p e r s  
s h o w s e v i d e n c e  
c s ’ o n t r o l .  
d C T 0 6 9 S 0 t a 7 m - 0 f 0 o 4 r 7  
O n e O m e g a D r i v e , B o x 4 0 4 7  
I S O 9 0 U 0 1 S A C : e r  
5 A 1 , C a n a d a  
A R R A N T Y i s V O I D i f t h e u r n i z i e t d s h m o w o d s i f e i c v a i d t i e  
l i m i t e d t o m i s h a  
g a r  
, o r u n a u t h o -  
, i n c l u d i n g b u t n o t  
t i f i e d  
C a n a d a :  
A R R W s ’ A N T Y d O o e M s E n G o A t a p p l y t o  
e x a m i n a t i o n b y  
t h A m e r i c a v : i c i S n e g r N o r  
D e p a r t m e n t w i l l  
s C ’ u s t o m e r S e r v i c e  
I f t h e u n i t m a l f  
i n f o @ o m e g a . c o m  
. o m e g w a w . c o w m  
O M E G A n e t  
c s ’ u s t o m e r O s M r e E c G e i A v e m a x i m  
t o c o v e r h a n d l i n g a n d s h i p p i n g t i m o e n . e T h ( 1 i s ) e y n e s a u r r e p t s o r t o h t h d a e u t c n t o r w m a a r l r a  
r r a a n t W y s ’ a d d s a n a d d i t i o n a l o n e ( 1 ) m o n f r t o h m g r d a a c t e e p o e f r 1 p i o 3 u d r m c h o o a n d s e t o h . f O s M E G A  
O M E G A E N G I N  
e - m a i l I n t e r n e t  
e c i v r e S e n i L - n O ®  
®
S A U  
o
D / I S C L A I M E A R R W R A N T Y  
®
I N  
M A D  
 
DIMENSIONS  
Step Two  
Vibration Level Switch, LTU-101 series  
3/4" NPT (3/4" Rp)  
3/4" NPT (3/4" G)  
10’ Cable (3m)  
2.3"(57mm)  
3.0"(76mm)  
4.7"(120mm)  
Ultrasonic Level Switch, LVU-150 series  
3/4" NPT (3/4" Rp)  
3/4" NPT (3/4" G)  
3/4" NPT (3/4" Rp)  
3/4" NPT (3/4" Rp)  
10’ Cable (3m)  
10’ Cable (3m)  
0.7"  
2.1"(54mm)  
2.8"(71mm)  
4.5"(114mm)  
(19mm)  
1.3"(32mm)  
3.0"(76mm)  
SuperGuard RF Capacitance Level Switch, LVC-152 series  
3/4" NPT (3/4" Rp)  
3/4" NPT (3/4" G)  
10’ Cable (3m)  
2.6"(67mm)  
3.3"(83mm)  
5.0"(127mm)  
Intrusive RF Capacitance Level Switch, LVC-100 series  
3/4" NPT (3/4" Rp)  
3/4" NPT (3/4" G)  
3/4" NPT (3/4" Rp)  
3/4" NPT (3/4" Rp)  
10’ Cable (3m)  
10’ Cable (3m)  
2.1"(54mm)  
2.8"(70mm)  
0.7"  
(19mm)  
1.3"(32mm)  
4.5"(114mm)  
3.0"(76mm)  
Optic Leak Detection Switch, LVF-210 series  
3/4" NPT (3/4" Rp)  
3/4" NPT (3/4" Rp)  
3/4" NPT (3/4" Rp)  
3/4" NPT (3/4" G)  
10’ Cable (3m)  
10’ Cable (3m)  
0.7"  
2.1"(54mm)  
2.8"(71mm)  
4.5"(114mm)  
(19mm)  
1.3"(32mm)  
3.0"(76mm)  
* all dimensions are Nominal  
 
SAFETY PRECAUTIONS  
INTRODUCTION  
Step Three  
Step Four  
About this Manual:  
Vibration Switch:  
PLEASE READ THE ENTIRE MANUAL PRIOR TO  
INSTALLING OR USING THIS PRODUCT. This manual  
includes information on all models of Omega’s powered level  
switches: LTU-101 series, LVU-150 series, LVC-152 series, LVC-  
100 series and LVF-210 series. Please refer to the part number  
located on the switch label to verify the exact model which you  
have purchased.  
The Tuning Fork vibration switch operates at a nominal frequency of  
400 Hz. As the switch becomes immersed in a liquid or slurry, a cor-  
responding frequency shift occurs. When the measured frequency  
shift reaches the set point value, the switch changes state indicating  
the presence of a liquid or slurry medium.  
Do not squeeze the forks together. Doing so could damage or  
break the sensor and void the warranty.  
User’s Responsibility for Safety:  
When powering up the LTU-101 series, the start-up procedure  
requires the switch to cycle through a wet condition for 1/2 second in  
order to determine an initial resonance.  
Omega manufactures a wide range of liquid level sensors and tech-  
nologies. While each of these sensors is designed to operate in a  
wide variety of applications, it is the user’s responsibility to select  
a sensor model that is appropriate for the application, install it  
properly, perform tests of the installed system, and maintain all  
components. The failure to do so could result in property damage  
or serious injury.  
Ultrasonic Switch:  
The Ultrasonic level switch generates a 1.5 MHz ultrasonic wave  
from a miniature piezoelectric transducer located on one side of the  
gap in its sensing tip. Another piezo transducer located on the other  
side of the gap acts as a microphone, picking up the sound. When liq-  
uid enters the gap in the sensing tip, the audio level changes.  
Proper Installation and Handling:  
Because this is an electrically operated device, only properly-  
trained staff should install and/or repair this product. Use a proper  
sealant with all installations. Never overtighten the sensor within  
the fitting, beyond a maximum of 80 inch-pounds torque. Always  
check for leaks prior to system start-up.  
The sensor should be installed so that the liquid will drip out of  
the gap when the sensor becomes dry.  
Optic Switch:  
Material Compatibility:  
The Optic Leak Detector use principles of optical refraction to detect  
the presence or absence of fluid. A pulsed infrared light beam is inter-  
nally generated by a light emitting diode and aimed at the slanted  
optical tip of the sensor. If the tip is dry, the light beam bounces at a  
90 degree angle to a receiving photo transistor, indicating a dry con-  
dition. If the tip is immersed in liquid, the light beam will refract out  
into the liquid instead of being reflected to the photo transistor, indi-  
cating a wet condition.  
The LVU-150, LVC-100 and LVF-210 series sensors are available  
in two different wetted materials. Models LVU-150/-152, LVC-  
101/-103 and LVF-210/-212 are made of Polypropylene(PP).  
Models LVU-151/-153, LVC-102/-104 and LVF-211/-213 are  
made of Perfluoroalkoxy(PFA), also known by the trade name  
Teflon. The LTU-101 series is made of PP with the forks made of  
Ryton (40% glass filled) and the LVC-152 series is made of PP.  
Make sure that the model you have selected is compatible with the  
application liquid. To determine the chemical compatibility  
between the sensor and its application liquids, refer to an industry  
reference.  
The Optic Leak Detector can not detect the presence or  
absence of specular application liquids that reflect light (such  
as milk), or viscous liquids (such as paint) that form a coating  
on the sensor tip.  
Wiring and Electrical:  
The supply voltage used to power the sensor should never exceed  
a maximum of 36 volts DC. Electrical wiring of the sensor should  
be performed in accordance with all applicable national, state, and  
local codes.  
SuperGuard Capacitance Switch:  
The SuperGuard level switch generates a pulse-wave radio frequency  
signal from the capacitance electrode located in the sensing tip of  
each sensor. When liquid comes into contact with the sensing tip, the  
capacitance as measured by the sensor changes based on the dielec-  
tric constant of the liquid. The guard circuit rejects the negative  
effects of coating buildup on the probe by eliminating the coating sig-  
nal path between the active and reference electrodes.  
Flammable, Explosive and Hazardous Applications:  
DO NOT USE THE LTU-101, LVU-150, LVC-152, LVC-100 OR  
LVF-210 SERIES GENERAL PURPOSE SWITCH IN HAZ-  
ARDOUS LOCATIONS.  
Intrusive RF Capacitance Switch:  
WARNING  
The Intrusive RF Capacitance level switch generates a 300 kHz pulse-  
wave radio frequency signal from the capacitance electrode located in  
the sensing tip of each sensor. When liquid comes into contact with  
the sensing tip, the capacitance as measured by the sensor changes  
based on the dielectric constant of the liquid.  
The rating for the relay is 120 VAC/60 VDC @ 1A. For CE  
rated applications, the relay rating is 60 VAC/60 VDC @ 1A.  
Omega’s powered level switches are not recommended for use  
with electrically charged application liquids. For most reliable  
operation, the liquid being measured may need to be electrical-  
ly grounded.  
The sensor’s operation may vary based on the dielectric prop-  
erties of various application liquids. The LVC-152 series &  
LVC-100 series sensor is factory-calibrated to be used with liq-  
uids with a dielectric value between 20 and 80.  
Liquids with a dielectric constant less than 20 will not  
be detected by an LVC-152 series & LVC-100 series sen-  
sor, as factory calibrated.  
 
INSTALLATION  
ELECTRICAL  
Step Five  
Step Six  
Supply Voltage:  
Through Wall Installation:  
The supply voltage to the powered level switch should never exceed  
a maximum of 36 VDC. Omega controllers have a built-in 13.5 VDC  
power supply which provides power to all of Omega’s electrically  
powered sensors. Alternative controllers and power supplies, with a  
minimum output of 12 VDC up to a maximum output of 36 VDC,  
may also be used with the powered level switch.  
Omega’s powered level switches may be installed through the top,  
side or bottom of a tank wall. The sensor has male 3/4" NPT threads  
on either side of a 15/16" wrench flat. This enables the user to select  
the sensor’s mounting orientation, installed outside of the tank in, or  
inside of the tank out.  
Required Cable Length:  
Determine the length of cable required between the powered level  
switch and its point of termination. Allow enough slack to ensure the  
easy installation, removal and/or maintenance of the sensor. The  
cable length may be extended up to a maximum of 1000 feet, using a  
well-insulated, 14 to 20 gauge shielded four conductor cable.  
Wire Stripping:  
Using a 10 gauge wire stripper, carefully remove the outer layer of  
insulation from the last 1-1/4" of the sensor's cable. Unwrap and dis-  
card the exposed foil shield from around the signal wires, leaving the  
drain wire attached if desired. With a 20 gauge wire stripper, remove  
the last 1/4" of the colored insulation from the signal wires.  
Multi-Point Installation:  
Omega’s LVM-10 series mounting system is an in-tank fitting which  
enables users to install up to four OMEGA sensors of any technology,  
to any depth, along the entire length of track. LVM-10 series may be  
installed through the top wall of any tank using a standard 2" NPT  
tank adapter. If no tank top installation is available, Omega's side  
mount bracket, LVM-30, enables LVM-10 series to be installed  
directly to the side wall of a tank.  
Signal Outputs (Current sensing):  
The standard method used by Omega controllers; this technology uses  
only two wires (Red and Black). The sensor draws 5 mA when it is dry,  
and 19 mA when wet. NC/NO status must be set by the controller. The  
White and Green wires are not used.  
Single-Point Installation:  
Omega’s LVM-50 series mounting system is an in-tank fitting which  
enables users to install one OMEGA sensor, of any technology, to a  
specific depth. The Omega sensor may be installed onto the 3/4" NPT  
adapter at the end of the LVM-50 series. LVM-50 series may be  
installed through the top wall of any tank using a standard 2" NPT  
tank adapter. Omega's side mount bracket, model LVM-30, may also  
be used if top wall installation is not available.  
Signal Output (Relay switching):  
Allows the sensor to switch a small load on or off directly, using an  
internal 1A relay (60 VAC/60 VDC). Omega’s powered level switch-  
es features 4 wires (red, black, white and green) and a shield wire. The  
NO/NC status is set by the polarity of the voltage feeding the red and  
black wires. The green wire is the common for the relay and the white  
wire is the NO or NC, depending on the polarity of red and black.  
Normally Open Wiring:  
Normally Open Wiring:  
 
WIRING  
WIRING  
Step Seven  
Step Eight  
Wiring to a Omega Controller:  
LVCN-110 Series Controller  
(4 or 20 mA signal output)  
Wiring the Relay Output:  
The relay output can be wired as a dry contact to a VDC or VAC  
power source. Powered level switch does require 12 - 36 VDC power  
to operate the sensor and switch the relay. All illustrations below  
identify a Dry switch state as the normal position of the relay.  
Switching a Normally Open DC Load:  
The Red wire connects to Positive (+) of the power supply and the  
Black wire connects to Negative (-). The LOAD can be attached to  
either the Green or White wires. Complete the circuit by either con-  
necting the Green to (+) VDC power or White to (-) VDC power (see  
illustration below).  
[Dry Condition]  
LCVN-120/-130/-140 Series Controller  
(4 or 20 mA signal output)  
[+]  
RED  
GRN  
SHLD  
WHT  
BLK  
LOAD  
LOAD  
Sensor  
(NO)  
OR  
[-]  
Switching a Normally Closed DC Load:  
The Black wire connects to Positive (+) of the power supply and the  
Red wire connects to Negative (-). The LOAD can be attached to  
either the Green or White wires. Complete the circuit by either con-  
necting the Green to (+) VDC power or White to (-) VDC power (see  
illustration below).  
[Dry Condition]  
[+]  
BLK  
GRN  
SHLD  
WHT  
RED  
Sensor  
(NC)  
LOAD  
LOAD  
OR  
[-]  
Switching a Normally Open AC Load:  
The Red wire connects to Positive (+) of the DC power supply and the  
Black wire connects to Negative (-). The LOAD can be attached to  
the Green wire and the Hot of the VAC power. Connect the White to  
the Neutral of the VAC power (see illustration below).  
[Dry Condition]  
[+]  
[AC Power]  
[-]  
RED  
GRN  
SHLD  
WHT  
BLK  
LOAD  
Sensor  
(NO)  
Switching a Normally Closed AC Load:  
The Black wire connects to Positive (+) of the DC power supply and  
the Red wire connects to Negative (-). The LOAD can be attached to  
the Green wire and the Hot of the VAC power. Connect the White to  
the Neutral of the VAC power (see illustration below).  
[Dry Condition]  
[+]  
BLK  
GRN  
SHLD  
WHT  
RED  
LOAD  
Sensor  
(NC)  
[AC Power]  
[-]  
 
WIRING  
MAINTENANCE  
Step Nine  
Step Ten  
Wiring as a P-Channel or N-Channel output:  
The powered level switch can be substituted for either a P-Channel  
(PNP, sourcing) output or a N-Channel (NPN, sinking) output.  
General:  
The powered level switch requires no periodic maintenance except  
cleaning as required. It is the responsibility of the user to determine  
the appropriate maintenance schedule, based on the specific charac-  
teristics of the application liquids.  
Normally Open DC Load as a P-Channel Output:  
To wire as a NO P-Channel output, follow the directions below. The  
Red wire connects to Positive (+) of the power supply and the Black  
wire connects to Negative (-). The Green wire is jumpered to the Red  
wire while the White wire is connected to the LOAD. Jumper the  
LOAD back to the Negative (-) to complete the circuit.  
Cleaning Procedure:  
1. Power: Make Sure that all power to the sensor, controller and/or  
power supply is completely disconnected.  
2. Sensor Removal: In all through-wall installations, make sure  
that the tank is drained well below the sensor prior to removal.  
Carefully, remove the sensor from the installation.  
[Dry Condition]  
[+]  
[-]  
RED  
GRN  
SHLD  
WHT  
BLK  
3. Cleaning the Sensor: Use a soft bristle brush and mild deter-  
gent, carefully wash the powered level switch. Do not use harsh  
abrasives such as steel wool or sandpaper, which might damage  
the surface sensor. Do not use incompatible solvents which may  
damage the sensor's PP, PFA, PVDF or Ryton plastic body.  
Sensor  
(NO)  
LOAD  
4. Sensor Installation: Follow the appropriate steps of installa-  
Normally Closed DC Load as a P-Channel Output:  
tion as outlined in the installation section of this manual.  
To wire as a NC P-Channel output, follow the directions below. The  
Black wire connects to Positive (+) of the power supply and the Red  
wire connects to Negative (-). The Green wire is jumpered to the  
Black wire while the White wire is connected to the LOAD. Jumper  
the LOAD back to the Negative (-) to complete the circuit.  
Testing the installation:  
1. Power: Turn on power to the controller and/or power supply.  
2. Immersing the switch: Immerse the sensing tip in its applica-  
tion liquid, by filling the tank up to the switches point of actua-  
tion. An alternate method of immersing the switch during prelim-  
inary testing is to hold a cup filled with application liquid up to  
the switch's tip.  
[Dry Condition]  
[+]  
[-]  
BLK  
GRN  
SHLD  
WHT  
RED  
Sensor  
(NC)  
3. Test: With the switch being fluctuated between wet and dry  
states, the switch indicator light in the controller should turn on  
and off. If the controller doesn't have an input indicator, use a volt-  
meter or ammeter to ensure that the switch produces the correct  
signal.  
LOAD  
Normally Open DC Load as a N-Channel Output:  
To wire as a NO N-Channel output, follow the directions below. The  
Red wire connects to Positive (+) of the power supply and the Black  
wire connects to Negative (-). The White wire is jumpered to the  
Black wire while the Green wire is connected to the LOAD. Jumper  
the LOAD back to the Positive (+) to complete the circuit.  
4. Point of actuation: Observe the point at which the rising or  
falling fluid level causes the switch to change state, and adjust the  
installation of the switch if necessary.  
[Dry Condition]  
[+]  
[-]  
RED  
GRN  
SHLD  
WHT  
BLK  
LOAD  
Sensor  
(NO)  
Normally Closed DC Load as a N-Channel Output:  
To wire as a NC N-Channel output, follow the directions below. The  
Black wire connects to Positive (+) of the power supply and the Red  
wire connects to Negative (-). The White wire is jumpered to the Red  
wire while the White wire is connected to the LOAD. Jumper the  
LOAD back to the Positive (+) to complete the circuit.  
[Dry Condition]  
[+]  
[-]  
BLK  
GRN  
SHLD  
WHT  
RED  
Sensor  
(NC)  
LOAD  
 

NAD Stereo Receiver C422 User Manual
National Instruments Marine RADAR NI USB 6525 User Manual
National Instruments Network Card DP8400 User Manual
NeumannBerlin Microphone RSM 190i User Manual
Newcon Optik Binoculars NVS 4 User Manual
Nikon Washer Dryer Capture NX2 User Manual
Numark Industries Turntable PRO TT 1 User Manual
Oreck Vacuum Cleaner DTX 1200A User Manual
Oster Blender 6800 6839 User Manual
Panasonic Vacuum Cleaner MC E851 User Manual