Philips Network Router TDA5051A User Manual

INTEGRATED CIRCUITS  
DATA SHEET  
TDA5051A  
Home automation modem  
1999 May 31  
Product specification  
Supersedes data of 1997 Sep 19  
File under Integrated Circuits, IC11  
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TDA5051AT  
SO16  
plastic small outline package; 16 leads; body width 7.5 mm  
SOT162-1  
BLOCK DIAGRAM  
DGND  
AGND  
12  
V
V
V
DDA  
13  
DDD  
3
DDAP  
11  
5
modulated  
carrier  
POWER  
DRIVE  
WITH  
6
10  
TX  
ROM  
D/A  
OUT  
PROTECTION  
9
DAC clock  
APGND  
10  
1
4
CONTROL LOGIC  
DATA  
IN  
TDA5051A  
15  
PD  
filter clock  
CLK  
OUT  
7
8
OSC1  
OSC2  
OSCILLATOR  
2
÷
DIGITAL  
BAND-PASS  
FILTER  
14  
2
DIGITAL  
DEMODULATOR  
RX  
IN  
DATA  
OUT  
A/D  
8
5
H
L
U
D
PEAK  
DETECT  
U/D  
COUNT  
16  
6
MGK832  
TEST1 SCANTEST  
Fig.1 Block diagram.  
3
1999 May 31  
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
PINNING  
SYMBOL PIN  
DESCRIPTION  
DATAIN  
DATAOUT  
VDDD  
1
2
3
4
5
6
7
8
9
digital data input (active LOW)  
digital data output (active LOW)  
digital supply voltage  
clock output  
handbook, halfpage  
DATA  
1
2
3
4
5
6
7
8
16  
TEST1  
PD  
IN  
CLKOUT  
DGND  
DATA  
15  
14  
13  
12  
11  
10  
9
OUT  
DDD  
OUT  
digital ground  
V
RX  
IN  
SCANTEST  
OSC1  
test input (LOW in application)  
oscillator input  
CLK  
V
DDA  
TDA5051AT  
DGND  
SCANTEST  
OSC1  
OSC2  
oscillator output  
AGND  
APGND  
TXOUT  
analog ground for power amplifier  
V
DDAP  
10 analog signal output  
TX  
OUT  
VDDAP  
11 analog supply voltage for power  
amplifier  
APGND  
OSC2  
MGK833  
AGND  
VDDA  
RXIN  
12 analog ground  
13 analog supply voltage  
14 analog signal input  
PD  
15 power-down input (active HIGH)  
16 test input (HIGH in application)  
Fig.2 Pin configuration.  
TEST1  
All logic inputs and outputs are compatible with  
TTL/CMOS levels, providing an easy connection to a  
standard microcontroller I/O port.  
FUNCTIONAL DESCRIPTION  
Both transmission and reception stages are controlled  
either by the master clock of the microcontroller or by the  
on-chip reference oscillator connected to a crystal. This  
ensures the accuracy of the transmission carrier and the  
exact trimming of the digital filter, thus making the  
performance totally independent of application  
disturbances such as component spread, temperature,  
supply drift and so on.  
The digital part of the IC is fully scan-testable. Two digital  
inputs, SCANTEST and TEST1, are used for production  
test: these pins must be left open-circuit in functional mode  
(correct levels are internally defined by pull-up or  
pull-down resistors).  
Transmission mode  
The interface with the power network is made by means of  
an LC network (see Fig.18). The device includes a power  
output stage that feeds a 120 dBµV (RMS) signal on a  
typical 30 load.  
To provide strict stability with respect to environmental  
conditions, the carrier frequency is generated by scanning  
the ROM memory under the control of the microcontroller  
clock or the reference frequency provided by the on-chip  
oscillator. High frequency clocking rejects the aliasing  
components to such an extent that they are filtered by the  
coupling LC network and do not cause any significant  
disturbance. The data modulation is applied through  
pin DATAIN and smoothly applied by specific digital circuits  
to the carrier (shaping). Harmonic components are limited  
in this process, thus avoiding unacceptable disturbance of  
the transmission channel (according to CISPR16 and  
EN50065-1 recommendations). A 55 dB Total Harmonic  
Distortion (TDH) is reached when the typical LC coupling  
network (or an equivalent filter) is used.  
To reduce power consumption, the IC is disabled by a  
power-down input (pin PD): in this mode, the on-chip  
oscillator remains active and the clock continues to be  
supplied at pin CLKOUT. For low-power operation in  
reception mode, this pin can be dynamically controlled by  
the microcontroller, see Section “Power-down mode”.  
When the circuit is connected to an external clock  
generator (see Fig.6), the clock signal must be applied at  
pin OSC1 (pin 7); OSC2 (pin 8) must be left open-circuit.  
Fig.7 shows the use of the on-chip clock circuit.  
1999 May 31  
4
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
The DAC and the power stage are set in order to provide  
a maximum signal level of 122 dBµV (RMS) at the output.  
After digital demodulation, the baseband data signal is  
made available after pulse shaping.  
The output of the power stage (TXOUT) must always be  
connected to a decoupling capacitor, because of a DC  
level of 0.5VDD at this pin, which is present even when the  
device is not transmitting. This pin must also be protected  
against overvoltage and negative transient signals.  
The DC level of TXOUT can be used to bias a unipolar  
transient suppressor, as shown in the application diagram;  
see Fig.18.  
The signal pin (RXIN) is a high-impedance input which has  
to be protected and DC decoupled for the same reasons  
as with pin TXOUT. The high sensitivity (82 dBµV) of this  
input requires an efficient 50 Hz rejection filter (realized by  
the LC coupling network), which also acts as an  
anti-aliasing filter for the internal digital processing;  
see Fig.18.  
Data format  
Direct connection to the mains is done through an LC  
network for low-cost applications. However, a HF signal  
transformer could be used when power-line insulation has  
to be performed.  
TRANSMISSION MODE  
The data input (DATAIN) is active LOW: this means that a  
burst is generated on the line (pin TXOUT) when DATAIN  
pin is LOW.  
CAUTION  
Pin TXOUT is in a high-impedance state as long as the  
device is not transmitting. Successive logic 1s are treated  
in a Non-Return-to-Zero (NRZ) mode, see pulse shapes in  
Figs 8 and 9.  
In transmission mode, the receiving part of the circuit is  
not disabled and the detection of the transmitted signal  
is normally performed. In this mode, the gain chosen  
before the beginning of the transmission is stored, and  
the AGC is internally set to 6 dB as long as DATAIN  
is LOW. Then, the old gain setting is automatically  
restored.  
RECEPTION MODE  
The data output (pin DATAOUT) is active LOW; this means  
that the data output is LOW when a burst is received.  
Pin DATAOUT remains LOW as long as a burst is received.  
Reception mode  
The input signal received by the modem is applied to a  
wide range input amplifier with AGC (6 to +30 dB). This is  
basically for noise performance improvement and signal  
level adjustment, which ensures a maximum sensitivity of  
the ADC. An 8-bit conversion is then performed, followed  
by digital band-pass filtering, to meet the CISPR  
normalization and to comply with some additional  
limitations met in current applications.  
Power-down mode  
Power-down input (pin PD) is active HIGH; this means that  
the power consumption is minimum when pin PD is HIGH.  
Now, all functions are disabled, except clock generation.  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL PARAMETER  
VDD  
MIN.  
MAX.  
UNIT  
supply voltage  
4.5  
5.5  
12  
V
fosc  
Tstg  
Tamb  
Tj  
oscillator frequency  
storage temperature  
ambient temperature  
junction temperature  
MHz  
°C  
50  
10  
+150  
+80  
°C  
°C  
125  
HANDLING  
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is  
desirable to take normal precautions appropriate to handling MOS devices.  
1999 May 31  
5
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
CHARACTERISTICS  
VDDD = VDDA = 5 V ±5%; Tamb = 0 to 70 °C; VDDD connected to VDDA; DGND connected to AGND.  
SYMBOL PARAMETER CONDITIONS MIN. TYP.  
MAX.  
UNIT  
Supply  
VDD  
supply voltage  
4.75  
5
5.25  
V
IDD(RX/TX)(tot) total analog + digital  
supply current  
VDD = 5 V ±5%  
TX or RX mode  
28  
38  
mA  
IDD(PD)(tot)  
total analog + digital  
supply current;  
VDD = 5 V ±5%;  
PD = HIGH  
19  
25  
mA  
Power-down mode  
IDD(PAMP)  
power amplifier supply  
current  
VDD = 5 V ±5%;  
ZL = 30 ;  
DATAIN = LOW  
in transmission mode  
19  
76  
30  
mA  
mA  
IDD(PAMP)(max) maximum power amplifier VDD = 5 V ±5%;  
supply current  
ZL = 1 ;  
DATAIN = LOW  
in transmission mode  
DATAIN and PD inputs: DATAOUT and CLKOUT outputs  
VIH  
VIL  
HIGH-level input voltage  
0.2VDD + 0.9 −  
VDD + 0.5  
V
LOW-level input voltage  
0.5  
2.4  
0.2VDD 0.1 V  
VOH  
VOL  
HIGH-level output voltage IOH = 1.6 mA  
LOW-level output voltage  
V
V
IOL = 1.6 mA  
0.45  
OSC1 input and OSC2 output (OSC2 only used for driving external quartz crystal; must be left open-circuit  
when using an external clock generator)  
VIH  
VIL  
HIGH-level input voltage  
0.7VDD  
0.5  
2.4  
VDD + 0.5  
V
LOW-level input voltage  
0.2VDD 0.1 V  
VOH  
VOL  
HIGH-level output voltage IOH = 1.6 mA  
LOW-level output voltage  
V
V
IOL = 1.6 mA  
0.45  
Clock  
fosc  
oscillator frequency  
6.080  
9.504  
MHz  
ratio between oscillator  
and carrier frequency  
64  
fosc  
--------  
fcr  
ratio between oscillator  
and clock output frequency  
2
f osc  
---------------------  
fCLKOUT  
Transmission mode  
fcr  
carrier frequency  
fosc = 8.48 MHz  
132.5  
170  
kHz  
tsu  
set-up time of the shaped fosc = 8.48 MHz;  
burst  
µs  
see Fig.8  
th  
hold time of the shaped  
burst  
fosc = 8.48 MHz;  
see Fig.8  
170  
µs  
1999 May 31  
6
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
190  
MAX.  
UNIT  
µs  
tW(DI)(min)  
minimum pulse width of  
DATAIN signal  
fosc = 8.48 MHz;  
see Fig.8  
Vo(rms)  
Io(max)  
Zo  
output carrier signal  
(RMS value)  
ZL = CISPR16;  
DATAIN = LOW  
120  
122  
dBµV  
mA  
power amplifier maximum ZL = 1 ;  
output current (peak value) DATAIN = LOW  
160  
5
output impedance of the  
power amplifier  
VO  
output DC level at  
pin TXOUT  
2.5  
55  
V
THD  
total harmonic distortion on  
CISPR16 load with the  
coupling network  
V
o(rms) = 121 dBµV on  
CISPR16 load;  
osc = 8.48 MHz;  
dB  
f
(measured on the first ten DATAIN = LOW  
harmonics)  
(no modulation);  
see Figs 3 and 16  
B20dB  
bandwidth of the shaped  
output signal (at 20 dB)  
on CISPR16 load with the  
coupling network  
Vo(rms) = 121 dBµV on  
3000  
Hz  
CISPR16 load;  
f
osc = 8.48 MHz;  
DATAIN = 300 Hz;  
duty factor = 50%;  
see Fig.4  
Reception mode  
Vi(rms)  
analog input signal  
(RMS value)  
82  
122  
dBµV  
VI  
DC level at pin RXIN  
RXIN input impedance  
AGC range  
2.5  
50  
V
Zi  
kΩ  
dB  
µs  
RAGC  
tc(AGC)  
36  
AGC time constant  
fosc = 8.48 MHz;  
see Fig.5  
296  
td(dem)(su)  
td(dem)(h)  
demodulation delay set-up fosc = 8.48 MHz;  
350  
420  
400  
470  
µs  
time  
see Fig.15  
demodulation delay hold  
time  
fosc = 8.48 MHz;  
see Fig.15  
µs  
Bdet  
detection bandwidth  
bit error rate  
fosc = 8.48 MHz  
3
1
kHz  
1 × 104  
BER  
fosc = 8.48 MHz;  
600 baud; S/N = 35 dB;  
signal 76 dBµV;  
see Fig.17  
1999 May 31  
7
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Power-up timing  
td(pu)(TX)  
delay between power-up  
and DATAIN in  
transmission mode  
XTAL = 8.48 MHz;  
C1 = C2 = 27 pF;  
Rp = 2.2 M; see Fig.10  
1
1
µs  
td(pu)(RX)  
delay between power-up  
and DATAOUT in reception C1 = C2 = 27 pF;  
XTAL = 8.48 MHz;  
µs  
mode  
Rp = 2.2 M;  
fRXIN = 132.5 kHz;  
120 dBµV sine wave;  
see Fig.11  
Power-down timing  
td(pd)(TX) delay between PD = 0 and fosc = 8.48 MHz;  
10  
µs  
DATAIN in transmission  
mode  
see Fig.12  
td(pd)(RX)  
delay between PD = 0 and  
DATAOUT in reception  
mode  
f
osc = 8.48 MHz;  
500  
µs  
fRXIN = 132.5 kHz;  
120 dBµV sine wave;  
see Fig.13  
tactive(min)  
minimum active time with  
T = 10 ms power-down  
period in reception mode  
fosc = 8.48 MHz;  
fRXIN = 132.5 kHz;  
120 dBµV sine wave;  
see Fig.14  
1
µs  
MGK834  
0
d
132.5 kHz  
V
o(rms)  
(dBV)  
100  
6
5
10  
10  
f (Hz)  
Resolution bandwidth = 9 kHz; top: 0 dBV (RMS) = 120 dBµV (RMS); marker at 5 dBV (RMS) = 115 dBµV (RMS);  
the CISPR16 network provides an attenuation of 6 dB, so the signal amplitude is 121 dBµV (RMS).  
Fig.3 Carrier spectrum.  
1999 May 31  
8
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
1500 Hz  
MBH664  
10  
20 dB  
dBV  
(RMS)  
60  
117.5  
132.5  
147.5  
f (kHz)  
Resolution bandwidth = 100 Hz; B20dB = 3000 Hz (2 × 1500 Hz).  
Fig.4 Shaped signal spectrum.  
V
RXIN  
modulated sine wave 122 dBµV amplitude  
V
(I)  
0
t
G
AGC  
+30 dB  
8.68 dB  
AGC range  
6 dB  
t
c(AGC)  
MGK011  
(AGC time constant)  
Fig.5 AGC time constant definition (not to scale).  
9
1999 May 31  
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
TIMING  
Configuration for clock  
OSC1  
DGND  
CLK  
7
5
OUT  
f
osc  
MICRO-  
CONTROLLER  
TDA5051A  
XTAL  
GND  
MGK835  
For parameter description, see Table 1.  
Fig.6 External clock.  
C1  
CLK  
OSC2  
OSC1  
OUT  
CLK  
4
5
8
7
IN  
1
/
f
osc  
2
MICRO-  
CONTROLLER  
XTAL  
C2  
TDA5051A  
R
p
DGND  
GND  
MGK836  
For parameter description, see Table 1.  
Fig.7 Typical configuration for on-chip clock circuit.  
10  
1999 May 31  
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
Table 1 Clock oscillator parameters  
OSCILLATOR  
FREQUENCY  
fosc  
CLOCK OUTPUT  
FREQUENCY  
12fosc  
CARRIER FREQUENCY  
EXTERNAL COMPONENTS  
fcr  
6.080 to 9.504 MHz  
95 to 148.5 kHz  
3.040 to 4.752 MHz  
C1 = C2 = 27 to 47 pF;  
Rp = 2.2 to 4.7 M;  
XTAL = standard quartz crystal  
Table 2 Calculation of parameters depending on the clock frequency  
SYMBOL  
PARAMETER  
oscillator frequency  
CONDITIONS  
UNIT  
fosc  
with on-chip oscillator: frequency of the crystal Hz  
quartz; with external clock: frequency of the  
signal applied at OSC1  
fCLKOUT  
fcr  
clock output frequency  
12fosc  
164fosc  
Hz  
Hz  
carrier frequency/digital filter tuning  
frequency  
tsu  
set-up time of the shaped burst  
s
s
s
23  
1472  
------------  
fosc  
or  
or  
------  
fcr  
th  
hold time of the shaped burst  
23  
------  
fcr  
1472  
------------  
fosc  
tW(DI)(min)  
minimum pulse width of DATAIN signal  
1
tsu  
+
-----  
f cr  
tW(burst)(min) minimum burst time of VO(DC) signal  
tW(DI)(min) + th  
s
s
tc(AGC)  
AGC time constant  
2514  
------------  
fosc  
tsu(demod)  
demodulation set-up time  
demodulation hold time  
s
s
3200  
(max.)  
------------  
fosc  
th(demod)  
3800  
------------  
fosc  
(max.)  
1999 May 31  
11  
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
t
t
TX  
W(burst)  
W(burst)(min)  
OUT  
V
O(DC)  
t
t
h
su  
0
t
W(DI)(min)  
t
W(DI)  
(1)  
DATA  
IN  
(2)  
(3)  
MGK837  
(1) tW(DI) > tW(DI)(min)  
.
1
(2) tW(DI)(min) = tsu + -----  
fcr  
(3)  
tW(DI)(min) < tsu; wrong operation.  
Fig.8 Relationship between DATAIN and TXOUT (see Table 3).  
Table 3 Relationship between DATAIN and TXOUT  
PD  
DATAIN  
TXOUT  
high-impedance  
1
0
0
X(1)  
1
high-impedance (after th)  
active with DC offset  
0
Note  
1. X = don’t care.  
t
handbook, halfpage  
t
W(burst)  
t
su  
h
100%  
MGK010  
Fig.9 Pulse shape characteristics.  
12  
1999 May 31  
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
Timing diagrams  
90% V  
DD  
V
DD  
NOT DEFINED  
CLOCK STABLE  
CLK  
OUT  
HIGH  
DATA  
IN  
TX  
OUT  
t
MGK015  
d(pu)(TX)  
DATAIN is an edge-sensitive input and must be HIGH before starting a transmission.  
Fig.10 Timing diagram during power-up in transmission mode.  
90% V  
DD  
V
DD  
NOT DEFINED  
CLOCK STABLE  
CLK  
OUT  
RX  
IN  
NOT DEFINED  
HIGH  
DATA  
OUT  
t
t
d(dem)(h)  
d(pu)(RX)  
MGK016  
Fig.11 Timing diagram during power-up in reception mode.  
13  
1999 May 31  
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
PD  
DATA  
IN  
TX  
OUT  
t
d(pd)(TX)  
normal operation  
wrong operation  
TX  
delayed by PD  
OUT  
MGK017  
Fig.12 Power-down sequence in transmission mode.  
PD  
RX  
IN  
DATA  
OUT  
t
t
t
d(pd)(RX)  
d(dem)(su)  
d(pd)(RX)  
MGK018  
DATA delayed by PD  
OUT  
Fig.13 Power-down sequence in reception mode.  
PD  
RX  
IN  
DATA  
OUT  
t
active(min)  
T
I
DD(RX)  
I
DD  
I
DD(PD)  
0
MGK845  
Fig.14 Power saving by dynamic control of power-down.  
14  
1999 May 31  
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
TEST INFORMATION  
1 µF  
TX  
DATA  
OUT  
IN  
1
2
10  
14  
pulse  
generator  
300 Hz  
50%  
TDA5051A  
(to be tested)  
10 nF  
DATA  
RX  
OUT  
IN  
7
8
30 Ω  
Y1  
Y2  
XTAL  
f
osc  
OSCILLOSCOPE  
DATA  
IN  
TX  
/RX  
IN  
OUT  
DATA  
OUT  
t
t
d(dem)(su)  
d(dem)(h)  
MGK838  
Fig.15 Test set-up for measuring demodulation delay.  
15  
1999 May 31  
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
coupling  
network  
CISPR16  
network  
(3)  
(4)  
10 µF  
33 nF  
TX  
47 µH  
OUT  
OSC1  
OSC2  
10  
7
8
250 nF  
33 nF  
47 µH  
TDA5051A  
AGND, DGND, APGND  
50 µH  
5 Ω  
12, 5, 9  
50 Ω  
1
13, 3, 11  
V
V
V
DATA  
(2)  
DDA, DDD, DDAP  
IN  
250 nF  
(1)  
+5 V  
POWER  
SUPPLY  
50 µH  
SPECTRUM  
ANALYSER  
50 Ω  
5 Ω  
MGK839  
(1) Square wave TTL signal 300 Hz, duty factor = 50% for measuring signal bandwidth (see spectrum Fig.3).  
(2) DATAIN = LOW for measuring total harmonic distortion (see spectrum Fig.3).  
(3) Tuned for fcr = 132.5 kHz.  
(4) The CISPR16 network provides a 6 dB attenuation.  
Fig.16 Test set-up for measuring THD and bandwidth of the TXOUT signal.  
16  
1999 May 31  
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
TX  
OUT  
in  
out  
+
10  
+
SPECTRUM  
ANALYSER  
50 Ω  
COUPLING  
NETWORK  
(1)  
TDA5051A  
12, AGND, DGND, APGND  
5,  
9
1
7
8
OSC1  
OSC2  
DATA  
IN  
out  
WHITE  
NOISE  
XTAL = 8.48 MHz  
GENERATOR  
OSC1  
OSC2  
7
8
RX  
out  
in  
IN  
14  
COUPLING  
NETWORK  
(1)  
TDA5051A  
(to be tested)  
PARAMETERS  
600 BAUD  
12,  
5,  
9
AGND, DGND, APGND  
PSEUDO RANDOM SEQUENCE:  
9
2 1 BITS LONG  
2
DATA  
OUT  
DATA  
IN  
RXD  
V24/TTL  
INTERFACE  
V24 SERIAL DATA  
ANALYSER  
DATA  
OUT  
TXD  
MGK840  
(1) See Fig.16.  
Fig.17 Test set-up for measuring Bit Error Rate (BER).  
17  
1999 May 31  
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
APPLICATION INFORMATION  
250 V (AC)  
max  
T 630 mA  
47 nF/X2  
250 V (AC)  
2 µF  
250 V (AC)  
MOV  
250 V (AC)  
68 Ω  
(2 W)  
47 µH  
low R  
S
47 nF  
(63 V)  
+5 V  
1 mH  
1N4006  
1
3
78L05  
2
7V5  
(1.3 W)  
1N4006  
47 µH  
470 µF  
(16 V)  
1 µF  
(16 V)  
100 µF  
(16 V)  
47 nF  
V
V
V
DDA  
DDD  
DDAP  
+5 V  
DATA  
3
11  
13  
IN  
1
2
10 nF  
RX  
TX  
IN  
DATA  
14  
10  
OUT  
MICRO-  
CONTROLLER  
TDA5051A  
OUT  
CLK  
OUT  
PD  
4
SA5.0A  
15  
7
8
5
9
12  
OSC1  
2.2 MΩ  
OSC2 DGND APGND AGND  
XTAL  
7.3728 MHz  
27 pF  
27 pF  
MGK841  
fcr = 115.2 kHz for a XTAL = 7.3728 MHz standard crystal.  
Fig.18 Application diagram without power line insulation.  
18  
1999 May 31  
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
MBH907  
3
20  
10  
gain  
(dB)  
0
input  
impedance  
()  
20  
2
40  
10  
1
60  
2
80  
10  
100  
10  
2
3
4
5
6
7
10  
10  
10  
10  
10  
10  
f (Hz)  
Main features of the coupling network: 50 Hz rejection >80 dB; anti-aliasing for the digital filter >50 dB at the  
sampling frequency (12fosc). Input impedance always higher than 10 within the 95 to 148.5 kHz band.  
Fig.19 Gain (curve 1) and input impedance (curve 2) of the coupling network (fcr = 115.2 kHz; L = 47 µH;  
C = 47 nF).  
MBH908  
130  
handbook, halfpage  
V
o
(dBµV)  
120  
110  
100  
2
1
10  
10  
Z
()  
line  
Fig.20 Output voltage as a function of line impedance (with coupling network; L = 47 µH; C = 47 nF).  
1999 May 31  
19  
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
250 V (AC)  
max  
470 nF/X2  
250 V (AC)  
T 630 mA  
100 Ω  
(0.5 W)  
MOV  
250 V (AC)  
47 µH  
low R  
S
NEWPORT  
76250  
230 V  
6 V  
2
1
6
5
1 VA  
+5 V  
100 Ω  
1
3
78L05  
FDB08  
100 nF  
(63 V)  
22 µH  
2
470 µF  
(16 V)  
100 µF  
(16 V)  
47 nF  
1 µF  
(16 V)  
V
V
V
DDD  
DDAP  
DDA  
+5 V  
DATA  
3
11  
13  
IN  
1
2
10 nF  
RX  
TX  
IN  
DATA  
14  
10  
OUT  
MICRO-  
CONTROLLER  
TDA5051A  
OUT  
CLK  
OUT  
PD  
4
15  
7
8
5
9
12  
SA5.0A  
OSC1  
2.2 MΩ  
OSC2 DGND APGND AGND  
XTAL  
7.3728 MHz  
27 pF  
27 pF  
MGK842  
fcr = 115.2 kHz for a XTAL = 7.3728 MHz standard crystal.  
Fig.21 Application diagram with power line insulation.  
20  
1999 May 31  
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
250 V (AC)  
T 630 mA  
max  
2 µF  
250 V (AC)  
47 nF/X2  
250 V (AC)  
MOV  
250 V (AC)  
68 Ω  
(2 W)  
47 µH  
low R  
S
+5 V  
1 mH  
47 nF  
(63 V)  
1N4006  
1
3
78L05  
2
7V5  
(1.3 W)  
1N4006  
470 µF  
(16 V)  
47 µH  
100 µF  
(16 V)  
47 nF  
1 µF  
(16 V)  
V
V
V
DDA  
DDD  
DDAP  
10  
kΩ  
+5 V  
DATA  
3
11  
13  
IN  
150  
kΩ  
1
2
10 nF  
RX  
TX  
IN  
DATA  
14  
10  
OUT  
10 nF  
MICRO-  
CONTROLLER  
TDA5051A  
BC547B  
OUT  
CLK  
OUT  
PD  
4
33  
kΩ  
1 kΩ  
15  
7
8
5
9
12  
OSC1  
2.2 MΩ  
OSC2 DGND APGND AGND  
XTAL  
7.3728 MHz  
SA5.0A  
27 pF  
27 pF  
MGK843  
fcr = 115.2 kHz for a XTAL = 7.3728 MHz standard crystal.  
Fig.22 Application diagram without power line insulation, with improved sensitivity (68 dBµV typ.).  
1999 May 31  
21  
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
250 V (AC)  
max  
470 nF/X2  
250 V (AC)  
T 630 mA  
100 Ω  
(0.5 W)  
MOV  
250 V (AC)  
47 µH  
low R  
S
NEWPORT  
76250  
230 V  
6 V  
2
1
6
5
1 VA  
+5 V  
100 Ω  
1
3
78L05  
FDB08  
100 nF  
(63 V)  
22 µH  
2
470 µF  
(16 V)  
100 µF  
(16 V)  
47 nF  
1 µF  
(16 V)  
V
V
V
DDD  
DDAP  
DDA  
10  
kΩ  
+5 V  
DATA  
3
11  
13  
IN  
150  
kΩ  
1
2
10 nF  
RX  
TX  
IN  
DATA  
14  
10  
OUT  
10 nF  
MICRO-  
CONTROLLER  
TDA5051A  
BC547B  
OUT  
CLK  
OUT  
PD  
4
33  
kΩ  
1 kΩ  
15  
7
8
5
9
12  
OSC1  
2.2 MΩ  
OSC2 DGND APGND AGND  
XTAL  
7.3728 MHz  
SA5.0A  
27 pF  
27 pF  
MGK844  
fcr = 115.2 kHz for a XTAL = 7.3728 MHz standard crystal.  
Fig.23 Application diagram with power line insulation, with improved sensitivity (68 dBµV typ.).  
1999 May 31  
22  
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
PACKAGE OUTLINE  
SO16: plastic small outline package; 16 leads; body width 7.5 mm  
SOT162-1  
D
E
A
X
c
H
v
M
A
E
y
Z
16  
9
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
8
detail X  
e
w
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.30  
0.10  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
10.5  
10.1  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
mm  
2.65  
1.27  
0.050  
1.4  
0.25  
0.01  
0.25  
0.1  
0.25  
0.01  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.41  
0.014 0.009 0.40  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches 0.10  
0.055  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-01-24  
97-05-22  
SOT162-1  
075E03  
MS-013AA  
1999 May 31  
23  
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
If wave soldering is used the following conditions must be  
observed for optimal results:  
SOLDERING  
Introduction to soldering surface mount packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Wave soldering  
Manual soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
1999 May 31  
24  
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
WAVE  
REFLOW(1)  
BGA, SQFP  
not suitable  
suitable  
suitable  
suitable  
suitable  
suitable  
HLQFP, HSQFP, HSOP, HTSSOP, SMS not suitable(2)  
PLCC(3), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
not recommended(3)(4)  
not recommended(5)  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1999 May 31  
25  
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
NOTES  
1999 May 31  
26  
 
Philips Semiconductors  
Product specification  
Home automation modem  
TDA5051A  
NOTES  
1999 May 31  
27  
 
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Brazil: see South America  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Portugal: see Spain  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Romania: see Italy  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Tel. +65 350 2538, Fax. +65 251 6500  
Czech Republic: see Austria  
Slovakia: see Austria  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Slovenia: see Italy  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
20124 MILANO, Tel. +39 02 67 52 2531, Fax. +39 02 67 52 2557  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Vietnam: see Singapore  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 62 5344, Fax.+381 11 63 5777  
For all other countries apply to: Philips Semiconductors,  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1999  
SCA65  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
295002/25/02/pp28  
Date of release: 1999 May 31  
Document order number: 9397 750 05035  
 

Peavey Stereo Equalizer CEQ 280a User Manual
Philips Hair Clippers HQC688 User Manual
Philips Home Theater System DCK3060 User Manual
Philips Portable DVD Player PET707 00B User Manual
Philips TV Video Accessories PH321RFS01 User Manual
Pioneer Car Speaker TS SW3041D User Manual
Poulan Trimmer 530088847 User Manual
Premier Mounts Indoor Furnishings PSD SPA User Manual
ProForm Treadmill 485CX User Manual
ProScan Flat Panel Television PLT7223GK4 B User Manual