Philips Switch BUK205 50Y User Manual

Philips Semiconductors  
Product specification  
TOPFET high side switch  
SMD version of BUK201-50Y  
BUK205-50Y  
DESCRIPTION  
QUICK REFERENCE DATA  
Monolithic temperature and  
overload protected power switch  
based on MOSFET technology in a  
5 pin plastic surface mount  
envelope, configured as a single  
high side switch.  
SYMBOL  
PARAMETER  
MIN.  
UNIT  
IL  
Nominal load current (ISO)  
6
A
SYMBOL  
PARAMETER  
MAX.  
UNIT  
APPLICATIONS  
VBG  
IL  
Continuous off-state supply voltage  
Continuous load current  
Continuous junction temperature  
On-state resistance  
50  
15  
150  
60  
V
A
˚C  
m  
General controller for driving  
lamps, motors, solenoids, heaters.  
Tj  
RON  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Vertical power DMOS switch  
Low on-state resistance  
5 V logic compatible input  
Overtemperature protection -  
self resets with hysteresis  
Overload protection against  
short circuit load with  
output current limiting;  
latched - reset by input  
High supply voltage load  
protection  
Supply undervoltage lock out  
Status indication for overload  
protection activated  
Diagnostic status indication  
of open circuit load  
BATT  
STATUS  
POWER  
MOSFET  
INPUT  
CONTROL &  
PROTECTION  
CIRCUITS  
LOAD  
Very low quiescent current  
Voltage clamping for turn off of  
inductive loads  
GROUND  
RG  
ESD protection on all pins  
Reverse battery and  
overvoltage protection  
Fig.1. Elements of the TOPFET HSS with internal ground resistor.  
PINNING - SOT426  
PIN CONFIGURATION  
SYMBOL  
PIN  
1
DESCRIPTION  
Ground  
mb  
B
I
2
Input  
TOPFET  
HSS  
G
L
3
(connected to mb)  
Status  
S
3
4
1 2  
4 5  
5
Load  
Fig. 2.  
Fig. 3.  
mb Battery  
July 1996  
1
Rev 1.000  
 
Philips Semiconductors  
Product specification  
TOPFET high side switch  
SMD version of BUK201-50Y  
BUK205-50Y  
STATIC CHARACTERISTICS  
Tmb = 25 ˚C unless otherwise stated  
SYMBOL PARAMETER  
CONDITIONS  
MIN. TYP. MAX. UNIT  
Clamping voltages  
VBG  
VBL  
Battery to ground  
Battery to load  
IG = 1 mA  
50  
50  
12  
55  
55  
17  
65  
65  
21  
V
V
V
IL = IG = 1 mA  
IL = 1 mA  
-VLG  
Negative load to ground  
Supply voltage  
Operating range1  
battery to ground  
-
VBG  
5
-
40  
V
Currents  
VBG = 13 V  
IL  
IB  
IG  
IL  
Nominal load current2  
Quiescent current3  
Operating current4  
Off-state load current5  
VBL = 0.5 V; Tmb = 85 ˚C  
VIG = 0 V; VLG = 0 V  
VIG = 5 V; IL = 0 A  
VBL = 13 V; VIG = 0 V  
6
-
-
-
A
0.1  
2.2  
0.1  
2
4
1
µA  
mA  
µA  
1.5  
-
Resistances  
RON  
RON  
RG  
On-state resistance6  
On-state resistance  
Internal ground resistance  
VBG = 13 V; IL = 7.5 A; tp = 300 µs  
VBG = 5 V; IL = 1.5 A; tp = 300 µs  
IG = 10 mA  
-
-
-
45  
70  
60  
90  
-
mΩ  
mΩ  
150  
INPUT CHARACTERISTICS  
Tmb = 25 ˚C; VBG = 13 V  
SYMBOL PARAMETER  
CONDITIONS  
MIN. TYP. MAX. UNIT  
II  
Input current  
VIG = 5 V  
35  
6
60  
7.5  
2.1  
2
100  
8.5  
2.7  
-
µA  
V
VIG  
Input clamping voltage  
Input turn-on threshold voltage  
Input turn-off threshold voltage  
II = 200 µA  
VIG(ON)  
VIG(OFF)  
-
V
1.5  
V
1 On-state resistance is increased if the supply voltage is less than 9 V. Refer to figure 8.  
2 Defined as in ISO 10483-1.  
3 This is the continuous current drawn from the battery when the input is low and includes leakage current to the load.  
4 This is the continuous current drawn from the battery with no load connected, but with the input high.  
5 The measured current is in the load pin only.  
6 The supply and input voltage for the RON tests are continuous. The specified pulse duration tp refers only to the applied load current.  
July 1996  
3
Rev 1.000  
 
Philips Semiconductors  
Product specification  
TOPFET high side switch  
SMD version of BUK201-50Y  
BUK205-50Y  
PROTECTION FUNCTIONS AND STATUS INDICATIONS  
Truth table for normal, open-circuit load and overload conditions and abnormal supply voltages.  
FUNCTIONS  
SYMBOL CONDITION  
TRUTH TABLE  
THRESHOLD  
MIN. TYP. MAX. UNIT  
INPUT  
STATUS  
OUTPUT  
Normal on-state  
1
1
1
0
1
0
0
0
0
0
0
0
Normal off-state  
0
1
0
1
0
1
0
X
X
1
0
1
0
0
0
1
1
1
IL(OC)  
Open circuit load1  
Open circuit load  
Over temperature2  
Over temperature3  
Short circuit load4  
Short circuit load  
Low supply voltage5  
High supply voltage6  
100  
150  
9
350  
175  
10.5  
600  
-
mA  
˚C  
V
Tj(TO)  
VBL(TO)  
12  
VBG(TO)  
VBG(LP)  
3
4
5
V
V
40  
45  
50  
For input ‘0’ equals low, ‘1’ equals high, ‘X’ equals don’t care.  
For status ‘0’ equals low, ‘1’ equals open or high.  
For output switch ‘0’ equals off, ‘1’ equals on.  
STATUS CHARACTERISTICS  
Tmb = 25 ˚C.  
The status output is an open drain transistor, and requires an external pull-up circuit to indicate a logic high.  
SYMBOL PARAMETER  
CONDITIONS  
MIN. TYP. MAX. UNIT  
VSG  
VSG  
IS  
Status clamping voltage  
IS = 100 µA; VIG = 0 V  
IS = 50 µA; VBG = 13 V; VIG = 5 V  
VSG = 5 V  
6
-
7
8
0.8  
1
V
V
Status low voltage  
0.7  
0.1  
5
Status leakage current  
Status saturation current7  
-
µA  
mA  
IS  
VSS = 5 V; RS = 0 ; VBG = 13 V  
-
-
Application information  
RS  
External pull-up resistor8  
VSS = 5 V  
-
100  
-
kΩ  
1 In the on-state, the switch detects whether the load current is less than the quoted open load threshold current. This is for status indication  
only. Typical hysteresis equals 140 mA. The thresholds are specified for supply voltage within the normal working range.  
2 After cooling below the reset temperature the switch will resume normal operation. The reset temperature is lower than the trip temperature by  
typically 10 ˚C.  
3 If the overtemperature protection has operated, status remains low to indicate the overtemperature condition even if the input is taken low,  
providing the device has not cooled below the reset temperature.  
4 After short circuit protection has operated, the input voltage must be toggled low for the switch to resume normal operation.  
5 Undervoltage sensor causes the device to switch off. Typical hysteresis equals 0.7 V.  
6 Overvoltage sensor causes the device to switch off to protect the load. Typical hysteresis equals 1.3 V.  
7 In a fault condition with the pull-up resistor short circuited while the status transistor is conducting.  
8 The pull-up resistor also protects the status pin during reverse battery conditions.  
July 1996  
4
Rev 1.000  
 
Philips Semiconductors  
Product specification  
TOPFET high side switch  
SMD version of BUK201-50Y  
BUK205-50Y  
DYNAMIC CHARACTERISTICS  
Tmb = 25 ˚C; VBG = 13 V  
SYMBOL PARAMETER  
CONDITIONS  
MIN. TYP. MAX. UNIT  
Inductive load turn-off  
-VLG  
Negative load voltage1  
VIG = 0 V; IL = 7.5 A; tp = 300 µs  
15  
20  
25  
V
Short circuit load protection2 VIG = 5 V; RL 10 mΩ  
td sc  
IL  
Response time  
-
-
90  
42  
-
-
µs  
A
Load current prior to turn-off  
t < td sc  
Overload protection3  
IL(lim)  
Load current limiting  
VBL = 9 V; tp = 300 µs  
28  
40  
52  
A
SWITCHING CHARACTERISTICS  
Tmb = 25 ˚C, VBG = 13 V, for resistive load RL = 13 .  
SYMBOL PARAMETER  
CONDITIONS  
MIN. TYP. MAX. UNIT  
During turn-on  
to VIG = 5 V  
to 10% VL  
td on  
Delay time  
-
-
16  
1
-
µs  
V/µs  
dV/dton  
Rate of rise of load voltage  
2.5  
t on  
Total switching time  
to 90% VL  
-
40  
-
µs  
During turn-off  
to VIG = 0 V  
to 90% VL  
td off  
Delay time  
-
-
-
30  
1.2  
50  
-
2.5  
-
µs  
V/µs  
µs  
dV/dtoff  
t off  
Rate of fall of load voltage  
Total switching time  
to 10% VL  
CAPACITANCES  
Tmb = 25 ˚C; f = 1 MHz; VIG = 0 V  
SYMBOL PARAMETER  
CONDITIONS  
VBG = 13 V  
MIN. TYP. MAX. UNIT  
Cig  
Cbl  
Csg  
Input capacitance  
Output capacitance  
Status capacitance  
-
-
-
15  
415  
11  
20  
580  
15  
pF  
pF  
pF  
VBL = VBG = 13 V  
VSG = 5 V  
1 For a high side switch, the load pin voltage goes negative with respect to ground during the turn-off of an inductive load. This negative voltage  
is clamped by the device.  
2 The load current is self-limited during the response time for short circuit load protection. Response time is measured from when input goes  
high.  
3 If the load resistance is low, but not a complete short circuit, such that the on-state voltage remains less than VBL(TO), the device remains in  
current limiting until the overtemperature protection operates.  
July 1996  
5
Rev 1.000  
 
Philips Semiconductors  
Product specification  
TOPFET high side switch  
SMD version of BUK201-50Y  
BUK205-50Y  
IL / A  
BUK205-50Y  
40  
30  
20  
10  
0
VBG / V = 13  
VBL  
IL  
7
6
IB  
II  
B
I
TOPFET  
HSS  
VBG  
L
IS  
S
VLG  
G
VSG  
5
VIG  
RS  
IG  
0
0.5  
1
1.5  
2
VBL / V  
Fig.4. High side switch measurements schematic.  
(current and voltage conventions)  
Fig.7. Typical on-state characteristics, Tj = 25 ˚C.  
IL = f(VBL); parameter VBG; tp = 250 µs  
RON / mOhm  
BUK205-50Y  
Normalised Power Derating  
PD%  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
10  
VBG / V  
100  
0
20  
40  
60  
80  
Tmb /  
100  
120  
140  
C
Fig.5. Normalised limiting power dissipation.  
Fig.8. Typical on-state resistance, Tj = 25 ˚C.  
RON = f(VBG); conditions: IL = 7.5 A; tp = 300 µs  
PD% = 100PD/PD(25 ˚C) = f(Tmb)  
IL / A  
BUK205-50Y  
RON / mOhm  
BUK205-50Y  
20  
15  
10  
5
150  
100  
50  
VBG =  
5 V  
13 V  
typ.  
0
-60  
-20  
20  
60  
100  
140  
180  
0
0
50  
100  
150  
Tmb / C  
Tmb / C  
Fig.6. Limiting continuous on-state load current.  
IL = f(Tmb); conditions: VIG = 5 V, VBG = 13 V  
Fig.9. Typical on-state resistance, tp = 300 µs.  
RON = f(Tj); parameter VBG; condition IL = 1.5 A  
July 1996  
6
Rev 1.000  
 
Philips Semiconductors  
Product specification  
TOPFET high side switch  
SMD version of BUK201-50Y  
BUK205-50Y  
BUK205-50Y  
IL  
BUK205-50Y  
IG / mA  
5
100 uA  
10 uA  
1 uA  
CLAMPING  
4
3
2
1
0
OPERATING  
VIG = 3 V  
100 nA  
10 nA  
1 nA  
HIGH VOLTAGE  
QUIESCENT  
VIG = 0 V  
40  
0
20  
60  
-60  
-20  
20  
60  
Tj / C  
100  
140  
180  
10  
30  
50  
VBG / V  
Fig.10. Typical supply characteristics, 25 ˚C.  
IG = f(VBG); parameter VIG  
Fig.13. Typical off-state leakage current.  
IL = f(Tj); conditions: VBL = 13 V = VBG; VIG = 0 V.  
IG / mA  
BUK205-50Y  
II / uA  
BUK205-50Y  
3
2
1
0
200  
150  
100  
50  
VBG / V =  
5
VBG / V =  
7
13  
50  
13  
0
-60  
-20  
20  
60  
Tj / C  
100  
140  
180  
0
2
4
VIG / V  
6
8
Fig.11. Typical operating supply current.  
IG = f(Tj); parameter VBG; condition VIG = 5 V  
Fig.14. Typical input characteristics, Tj = 25 ˚C.  
II = f(VIG); parameter VBG  
II / uA  
BUK205-50Y  
IB  
BUK205-50Y  
100 uA  
100  
80  
60  
40  
20  
0
10 uA  
1 uA  
100 nA  
10 nA  
10  
30  
50  
-60  
-20  
20  
60  
Tj / C  
100  
140  
180  
0
20  
40  
VBG / V  
Fig.12. Typical supply quiescent current.  
IB = f(Tj); condition VBG = 13 V, VIG = 0 V, VLG = 0 V  
Fig.15. Typical input current, Tj = 25 ˚C.  
II = f(VBG); condition VIG = 5 V  
July 1996  
7
Rev 1.000  
 
Philips Semiconductors  
Product specification  
TOPFET high side switch  
SMD version of BUK201-50Y  
BUK205-50Y  
VIG / V  
3.0  
BUK205-50Y  
IS  
BUK205-50Y  
10 uA  
1 uA  
2.5  
VIG(ON)  
2.0  
100 nA  
10 nA  
VIG(OFF)  
1.5  
1.0  
-60  
-20  
20  
60  
Tj / C  
100  
140  
180  
-60  
-20  
20  
60  
Tj / C  
100  
140  
180  
Fig.16. Typical input threshold voltages.  
VIG = f(Tj); conditions VBG = 13 V, IL = 80 mA  
Fig.19. Typical status leakage current.  
IS = f(Tj); conditions VSG = 5 V, VIG = VBG = 0 V  
IS / uA  
BUK205-50Y  
VIG / V  
BUK205-50Y  
500  
400  
300  
200  
100  
0
8.0  
7.5  
7.0  
6.5  
-60  
-20  
20  
60  
Tj / C  
100  
140  
180  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
VSG / V  
Fig.17. Typical input clamping voltage.  
VIG = f(Tj); conditions II = 200 µA, VBG = 13 V  
Fig.20. Typical status low characteristic, Tj = 25 ˚C.  
IS = f(VSG); conditions VIG = 5 V, VBG = 13 V, IL = 0 A  
IS / mA  
BUK205-50Y  
VSG / V  
BUK205-50Y  
20  
15  
10  
5
1
0.8  
0.6  
0.4  
0.2  
0
0
0
2
4
6
8
10  
-60  
-20  
20  
60  
Tj / C  
100  
140  
180  
VSG / V  
Fig.18. Typical status characteristic, Tj = 25 ˚C.  
IS = f(VSG); conditions VIG = VBG = 0 V  
Fig.21. Typical status low voltage, VSG = f(Tj).  
conditions IS = 50 µA, VIG = 5 V, VBG = 13 V, IL = 0 A  
July 1996  
8
Rev 1.000  
 
Philips Semiconductors  
Product specification  
TOPFET high side switch  
SMD version of BUK201-50Y  
BUK205-50Y  
VBG(LP) / V  
BUK205-50Y  
VSG / V  
8.0  
BUK205-50Y  
47  
46  
45  
44  
43  
off  
VIG / V =  
5
7.5  
7.0  
6.5  
0
on  
-60  
-20  
20  
60  
Tj / C  
100  
140  
180  
-60  
-20  
20  
60  
Tj / C  
100  
140  
180  
Fig.22. Typical status clamping voltage, VSG = f(Tj).  
parameter VIG; conditions IS = 100 µA, VBG = 13 V  
Fig.25. Supply typical overvoltage thresholds.  
VBG(LP) = f(Tj); conditions VIG = 5 V; IL = 80 mA  
IL(OC) / mA  
BUK205-50Y  
VBG / V  
BUK205-50Y  
65  
60  
55  
50  
800  
700  
600  
500  
400  
300  
200  
100  
max.  
IG =  
1 mA  
typ.  
10 uA  
min.  
0
-50  
0
50  
100  
150  
200  
-60  
-20  
20  
60  
Tj / C  
100  
140  
180  
Tmb / C  
Fig.23. Low load current detection threshold.  
IL(OC) = f(Tj); conditions VIG = 5 V; VBG = 13 V  
Fig.26. Typical battery to ground clamping voltage.  
VBG = f(Tj); parameter IG  
VBG(TO) / V  
BUK205-50Y  
IL / A  
BUK205-50Y  
5
4
3
2
1
0
30  
25  
20  
15  
10  
5
on  
off  
0
-25  
-20  
-15  
-10  
-5  
0
-60  
-20  
20  
60  
Tj / C  
100  
140  
180  
VLG / V  
Fig.24. Supply typical undervoltage thresholds.  
VBG(TO) = f(Tj); conditions VIG = 3 V; IL = 80 mA  
Fig.27. Typical negative load clamping characteristic.  
IL = f(VLG); conditions VIG = 0 V, tp = 300 µs, 25 ˚C  
July 1996  
9
Rev 1.000  
 
Philips Semiconductors  
Product specification  
TOPFET high side switch  
SMD version of BUK201-50Y  
BUK205-50Y  
IL / A  
BUK205-50Y  
VLG / V  
-10  
BUK205-50Y  
0
-10  
-20  
-30  
-40  
IL =  
-12  
-14  
1 mA  
-16  
7.5 A  
-18  
tp = 300 us  
-20  
-22  
-1.2  
-1  
-0.8  
-0.6  
VLB / V  
-0.4  
-0.2  
0
-60  
-20  
20  
60  
Tj / C  
100  
140  
180  
Fig.28. Typical negative load clamping voltage.  
VLG = f(Tj); parameter IL; condition VIG = 0 V.  
Fig.31. Typical reverse diode characteristic.  
IL = f(VBL); conditions VIG = 0 V, Tj = 25 ˚C  
VBL / V  
BUK205-50Y  
IL =  
Cbl  
BUK205-50Y  
65  
60  
55  
50  
10 nF  
tp = 300 us  
4 A  
1 mA  
1 nF  
100 uA  
100 pF  
0
10  
20  
30  
40  
50  
-60  
-20  
20  
60  
Tj / C  
100  
140  
180  
VBL / V  
Fig.29. Typical battery to load clamping voltage.  
VBL = f(Tj); parameter IL; condition IG = 5 mA.  
Fig.32. Typical output capacitance. Tmb = 25 ˚C  
Cbl = f(VBL); conditions f = 1 MHz, VIG = 0 V  
IL / A  
BUK205-50Y  
current limiting  
IG / mA  
BUK205-50Y  
60  
50  
40  
30  
20  
10  
0
0
-50  
VBL(TO) typ.  
tp =  
50 us  
i.e. before short  
circuit load trip  
300 us  
-100  
-150  
-20  
-10  
VBG / V  
0
-15  
-5  
0
5
10  
15  
20  
25  
VBL / V  
Fig.30. Typical reverse battery characteristic.  
IG = f(VBG); conditions IL = 0 A, Tj = 25 ˚C  
Fig.33. Typical overload characteristic, Tmb = 25 ˚C.  
IL = f(VBL); condition VBG = 13 V; parameter tp  
July 1996  
10  
Rev 1.000  
 
Philips Semiconductors  
Product specification  
TOPFET high side switch  
SMD version of BUK201-50Y  
BUK205-50Y  
IL / A  
60  
BUK205-50Y  
VBL(TO) / V  
BUK205-50Y  
15  
14  
13  
12  
11  
10  
9
50  
typ.  
40  
30  
20  
10  
0
8
7
6
5
-50  
0
50  
100  
150  
200  
-60  
-20  
20  
60  
100  
140  
180  
Tmb / C  
Tmb / C  
Fig.34. Typical overload current, VBL = 9 V.  
IL = f(Tmb); conditions VBG = 13 V; tp = 300 µs  
Fig.36. Typical short circuit load threshold voltage.  
VBL(TO) = f(Tmb); condition VBG = 13 V  
VBL(TO) / V  
BUK205-50Y  
Zth j-mb / (K/W)  
BUK205-50Y  
10  
1
12  
11  
10  
9
D =  
0.5  
0.2  
0.1  
0.1  
0.05  
p
t
t
p
P
D =  
D
T
0.02  
t
T
0
0.01  
8
100n  
1u  
10u  
100u  
1m  
10m 100m  
1
10  
0
10  
20  
30  
40  
VBG / V  
t / s  
Fig.35. Typical short circuit load threshold voltage.  
VBL(TO) = f(VBG); condition Tmb = 25 ˚C  
Fig.37. Transient thermal impedance.  
Zth j-mb = f(t); parameter D = tp/T  
July 1996  
11  
Rev 1.000  
 
Philips Semiconductors  
Product specification  
TOPFET high side switch  
SMD version of BUK201-50Y  
BUK205-50Y  
MECHANICAL DATA  
Dimensions in mm  
Net Mass: 1.5 g  
10.3 MAX  
4.5 MAX  
1.4 MAX  
0.85 MAX  
(x4)  
0.5  
Fig.38. SOT426  
mounting base connected to centre pin (cropped short)  
MOUNTING INSTRUCTIONS  
Dimensions in mm  
11.5  
9.0  
17.5  
3.4  
1.7  
1.7  
3.8  
1.3 (x4)  
Fig.39. SOT426  
soldering pattern for surface mounting.  
July 1996  
12  
Rev 1.000  
 
Philips Semiconductors  
Product specification  
TOPFET high side switch  
SMD version of BUK201-50Y  
BUK205-50Y  
DEFINITIONS  
Data sheet status  
Objective specification  
This data sheet contains target or goal specifications for product development.  
Preliminary specification This data sheet contains preliminary data; supplementary data may be published later.  
Product specification  
This data sheet contains final product specifications.  
Limiting values  
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one  
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and  
operation of the device at these or at any other conditions above those given in the Characteristics sections of  
this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
Philips Electronics N.V. 1996  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the  
copyright owner.  
The information presented in this document does not form part of any quotation or contract, it is believed to be  
accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under patent or other  
industrial or intellectual property rights.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices or systems where malfunction of these  
products can be reasonably expected to result in personal injury. Philips customers using or selling these products  
for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting  
from such improper use or sale.  
July 1996  
13  
Rev 1.000  
 

Philips Computer Drive CDD3615 User Manual
Philips DVD VCR Combo DVP 721VR User Manual
Philips DVR VR707 User Manual
Philips Flat Panel Television MIS F 200 100 User Manual
Philips Food Processor HR1393 User Manual
Philips Network Card VOIP0211G User Manual
Philips Portable DVD Player PET810 User Manual
Pioneer Home Theater System HTZ363DVD User Manual
Pride Mobility Mobility Aid Jazzy 1170XL User Manual
ProForm Home Gym 831285284 User Manual