Texas Instruments Telephone TCM4300 User Manual

Data Manual  
1996  
Mixed-Signal Products  
 
TCM4300  
Data Manual  
Advanced RF Cellular Telephone Interface Circuit  
(ARCTIC )  
SLWS010F  
October 1996  
Printed on Recycled Paper  
 
IMPORTANT NOTICE  
Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any  
semiconductor product or service without notice, and advises its customers to obtain the latest  
version of relevant information to verify, before placing orders, that the information being relied  
on is current.  
TIwarrantsperformanceofitssemiconductorproductsandrelatedsoftwaretothespecifications  
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality  
control techniques are utilized to the extent TI deems necessary to support this warranty.  
Specific testing of all parameters of each device is not necessarily performed, except those  
mandated by government requirements.  
Certain applications using semiconductor products may involve potential risks of death,  
personal injury, or severe property or environmental damage (“Critical Applications”).  
TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES  
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.  
Inclusion of TI products in such applications is understood to be fully at the risk of the customer.  
Use of TI products in such applications requires the written approval of an appropriate TI officer.  
Questions concerning potential risk applications should be directed to TI through a local SC  
sales office.  
In order to minimize risks associated with the customer’s applications, adequate design and  
operating safeguards should be provided by the customer to minimize inherent or procedural  
hazards.  
TI assumes no liability for applications assistance, customer product design, software  
performance, or infringement of patents or services described herein. Nor does TI warrant or  
represent that any license, either express or implied, is granted under any patent right, copyright,  
mask work right, or other intellectual property right of TI covering or relating to any combination,  
machine, or process in which such semiconductor products or services might be or are used.  
Copyright 1996, Texas Instruments Incorporated  
 
Contents  
Section  
Title  
Page  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
1.2 TCM4300 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2  
1.3 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3  
1.4 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4  
2
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
2.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range . . . . 2–1  
2.2 Dissipation Rating Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
2.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2  
2.4 Electrical Characteristics Over Full Range Of Operating Conditions . . . . . . . . . . . 2–2  
2.4.1 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2  
2.4.2 Reference Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2  
2.4.3 Terminal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3  
2.4.4 RXIP, RXIN, RXQP, and RXQN Inputs (AVDD = 3 V, 4.5 V, 5 V) . . . . . . . 2–3  
2.4.5 Transmit I and Q Channel Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4  
2.4.6 Auxiliary D/A Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4  
2.4.7 Auxiliary D/A Converters Slope (AGC, AFC, PWRCONT) . . . . . . . . . . . . 2–5  
2.4.8 Auxiliary D/A Converters Slope (LCDCONTR) . . . . . . . . . . . . . . . . . . . . . . 2–5  
2.4.9 RSSI/Battery A/D Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5  
2.5 Operating Characteristics Over Full Range of Operating Conditions . . . . . . . . . . 2–6  
2.5.1 Receive (RX) Channel Frequency Response  
(RXI, RXQ Input in Digital Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6  
2.5.2 Receive (RX) Channel Frequency Response  
(FM Input in Analog Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6  
2.5.3 Transmit (TX) Channel Frequency Response (Digital Mode) . . . . . . . . . . 2–6  
2.5.4 Transmit (TX) Channel Frequency Response (Analog Mode) . . . . . . . . . 2–7  
3
Parameter Measurement Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
3.1 MCLKOUT Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
3.2 TCM4300 to Microcontroller Interface Timing Requirements  
(Mitsubishi Read Cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
3.3 TCM4300 to Microcontroller Interface Timing Requirements  
(Mitsubishi Write Cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3  
3.4 TCM4300 to Microcontroller Interface Timing Requirements  
(Intel Read Cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4  
3.5 TCM4300 to Microcontroller Interface Timing Requirements  
(Intel Write Cycle)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5  
3.6 TCM4300 to Microcontroller Interface Timing Requirements  
(Motorola 16-Bit Read Cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6  
3.7 TCM4300 to Microcontroller Interface Timing Requirements  
(Motorola 16-Bit Write Cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7  
3.8 TCM4300 to Microcontroller Interface Timing Requirements  
(Motorola 8-Bit Read Cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8  
iii  
 
3.9 TCM4300 to Microcontroller Interface Timing Requirements  
(Motorola 8-Bit Write Cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9  
3.10 Switching Characteristics, TCM4300 to DSP Interface (Read Cycle) . . . . . . . . . 3–10  
3.11 Switching Characteristics, TCM4300 to DSP Interface (Write Cycle) . . . . . . . . . 3–11  
4
Principles of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
4.1 Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
4.2 Receive Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
4.3 Transmit Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3  
4.4 Transmit Burst Operation (Digital Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5  
4.5 Transmit I And Q Output Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–7  
4.6 Wide-Band Data Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–7  
4.7 Wide-band Data Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8  
4.8 Wide-band Data Demodulator General Information . . . . . . . . . . . . . . . . . . . . . . . . 4–9  
4.9 Auxiliary DACs, LCD Contrast Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11  
4.10 RSSI, Battery Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11  
4.11 Timing And Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11  
4.11.1 Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12  
4.11.2 Speech-Codec Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12  
4.11.3 Microcontroller Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12  
4.11.4 Sample Interrupt SINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12  
4.11.5 Phase-Adjustment Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–13  
4.12 Frequency Synthesizer Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–15  
4.13 Power Control Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–18  
4.14 Microcontroller-DSP Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–20  
4.15 Microcontroller Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–21  
4.16 Wide-Band Data/Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–22  
4.17 Microcontroller Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–23  
4.18 LCD Contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–24  
4.19 DSP Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–25  
4.20 Wide-Band Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26  
4.21 Base Station Offset Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26  
4.22 DSP Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–27  
4.23 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–28  
4.23.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–28  
4.23.2 Internal Reset State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–28  
4.24 Microcontroller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–29  
4.24.1 Intel Microcontroller Mode Of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 4–29  
4.24.2 Mitsubishi Microcontroller Mode of Operation . . . . . . . . . . . . . . . . . . . . . 4–30  
4.24.3 Motorola Microcontroller Mode of Operation . . . . . . . . . . . . . . . . . . . . . . 4–30  
5
Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
iv  
 
List of Illustrations  
Figure  
Title  
Page  
3–1  
3–2  
MCLKOUT Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
Microcontroller Interface Timing Requirements  
(Mitsubishi Configuration Read Cycle, MTS [1:0] = 10) . . . . . . . . . . . . . . . . . . . . . . 3–2  
Microcontroller Interface Timing Requirements  
(Mitsubishi Configuration Write Cycle, MTS [1:0] = 10) . . . . . . . . . . . . . . . . . . . . . . 3–3  
Microcontroller Interface Timing Requirements  
(Intel Configuration Read Cycle, MTS [1:0] = 00) . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4  
Microcontroller Interface Timing Requirements  
(Intel Configuration Write Cycle, MTS [1:0] = 00) . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5  
Microcontroller Interface Timing Requirements  
(Motorola 16-Bit Read Cycle, MTS [1:0] = 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6  
Microcontroller Interface Timing Requirements  
(Motorola 16-Bit Write Cycle, MTS [1:0] = 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7  
Microcontroller Interface Timing Requirements  
(Motorola 8-Bit Read Cycle, MTS [1:0] = 01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8  
Microcontroller Interface Timing Requirements  
3–3  
3–4  
3–5  
3–6  
3–7  
3–8  
3–9  
(Motorola 8-Bit Write Cycle, MTS [1:0] = 01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9  
3–10 TCM4300 to DSP Interface (Read Cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10  
3–11 TCM4300 to DSP Interface (Write Cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11  
4–1  
4–2  
4–3  
4–4  
4–5  
4–6  
4–7  
4–8  
4–9  
Power Ramp-Up/Ramp-Down TIming Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–6  
Transmit Power Ramp-Up/Ramp-Down Functional Diagram . . . . . . . . . . . . . . . . . 4–7  
WBD Manchester-Coded Data Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9  
Codec Master and Sample Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12  
Timing and Clock Generation for 38.88-MHz Clock . . . . . . . . . . . . . . . . . . . . . . . . . 4–14  
Synthesizer Interface Circuit Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–16  
Contents of SynData Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–17  
Example Synthesizer Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–18  
Internal and External Power Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–19  
4–10 Microcontroller-DSP Data Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–20  
4–11 DSP Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26  
4–12 Power-On Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–28  
v
 
List of Tables  
Table  
Title  
Page  
4–1  
4–2  
4–3  
4–4  
4–5  
4–6  
4–7  
4–8  
4–9  
TCM4300 Receive Channel Control Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
RXIP, RXIN, RXQP, and RXQN Inputs (AV = 3 V, 4.5 V, 5 V) . . . . . . . . . . . . . . 4–2  
DD  
Receive (RX) Channel Frequency Response (FM Input in Analog Mode) . . . . . . 4–3  
Receive (RX) Channel Frequency Response (RXI, RXQ Input in Digital Mode) . 4–3  
Transmit (TX) I and Q Channel Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4  
Transmit (TX) Channel Frequency Response (Digital Mode) . . . . . . . . . . . . . . . . . 4–5  
Transmit (TX) Channel Frequency Response (Analog Mode) . . . . . . . . . . . . . . . . 4–5  
Typical Bit-Error-Rate Performance (WBD_BW = 000) . . . . . . . . . . . . . . . . . . . . . . 4–8  
Bits in Control Register WBDCtrl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8  
4–10 Auxiliary D/A Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–10  
4–11 Auxiliary D/A Converters Slope (AGC, AFC, PWRCONT) . . . . . . . . . . . . . . . . . . . 4–10  
4–12 Auxiliary D/A Converters Slope (LCDCONTR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11  
4–13 RSSI/Battery A/D Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11  
4–14 Synthesizer Control Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–17  
4–15 External Power Control Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–18  
4–16 Microcontroller Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–21  
4–17 Microcontroller Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–22  
4–18 WBDCtrl Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–23  
4–19 MStatCtrl Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–24  
4–20 DSP Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–25  
4–21 DSP Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–25  
4–22 DStatCtrl Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–27  
4–23 Power-On Reset Register Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–28  
4–24 Microcontroller Interface Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–29  
4–25 Microcontroller Interface Connections for Intel Mode . . . . . . . . . . . . . . . . . . . . . . . . 4–29  
4–26 Microcontroller Interface Connections for Mitsubishi Mode . . . . . . . . . . . . . . . . . . . 4–30  
4–27 Microcontroller Interface Connections for Motorola Mode (8 bits) . . . . . . . . . . . . . 4–30  
4–28 Microcontroller Interface Connections for Motorola Mode (16 bits) . . . . . . . . . . . . 4–31  
vi  
 
1 Introduction  
Texas Instruments (TI ) TCM4300 IS-54B advanced RF cellular telephone interface circuit (ARCTIC )  
provides a baseband interface between the digital signal processor (DSP), the microcontroller, and the RF  
modulator/demodulator in a dual-mode IS-54B cellular telephone. See the TCM4300 functional block  
diagram.  
In the analog mode, the TCM4300 provides all required baseband filtering as well as transmit D/A  
conversion and receive A/D conversion using dual 10-bit sigma-delta converters. In addition, a WBD  
wide-band data (WBD) –10 kb/s Manchester frequency shift key (FSK) demodulator is provided to allow  
reduced DSP processing load during subscriber standby mode.  
In the digital mode, the TCM4300 accepts I and Q baseband data and performs A/D and D/A conversion  
and square-root raised-cosine filtering using dual 10-bit sigma-delta converters. The TCM4300 also has a  
π/4-DQPSK modulation encoder for dibit-to-symbol conversion in the digital transmit mode.  
The microcontroller interface is compatible with a wide range of microcontrollers. A microcontroller can be  
used to communicate with the user interface (keyboard, display, etc.) and to program up to three frequency  
synthesizers by using the on-chip synthesizer interface circuit.  
The TCM4300 provides advanced power control to minimize the power consumption of many dual-mode  
telephone functional blocks such as the speech codec, FM receiver, I and Q demodulator, transmitter signal  
processor, and RF power amplifier. In addition, the TCM4300 is designed to reduce system power  
consumption through low-voltage operation and standby mode.  
The TCM4300 is offered in the 100-pin PZ package and is characterized for free-air operation from  
40°C to 85°C.  
1.1 Features  
Compliance With TIA IS-54B Dual-Mode Cellular Standard  
Baseband Transmit Digital-to-Analog (D/A) Conversion and Receive Analog-to-Digital (A/D)  
Conversion in Analog Transmit Mode Using Dual 10-Bit Sigma-Delta Converters  
Square Root Raised Cosine (SQRC) Filtering in the Digital Mode Using Dual 10-Bit Sigma-Delta  
Converters  
π/4-Differential Quadrature Phase-Shift Key (DQPSK) Modulation Encoder in Digital Transmit  
Mode  
Power Control Supervision for Radio Frequency (RF) Power Amplifier, Automatic Frequency  
Control (AFC), Automatic Gain Control (AGC), and Synthesizer  
Received Signal Strength Indicator (RSSI) and Battery-Level A/D Conversion Circuitry  
Internal Clock Generation  
Wide-Band Data Clock Recovery and Manchester Decoding  
General-Purpose Digital Signal Processor (DSP) and Microcontroller Interface  
3.3-V and 5-V Operation  
Low Power Consumption  
TI and ARCTIC are trademarks of Texas Instruments Incorporated.  
1–1  
 
1.2 TCM4300 Functional Block Diagram  
A
D
Low-  
Pass  
Filter  
Digital Filter  
TXIP  
TXIN  
TXI (04b)  
D/A  
I
Analog  
Mode (LPF)  
π/4 Shifted  
DQPSK  
Modulation  
TX Data  
Registers  
A
D
Low-  
Pass  
Filter  
TXQP  
TXQN  
Digital  
Mode (SQRC)  
D/A  
Q
10  
TXQ (05b)  
ModeSel  
6
TX  
Offset  
0Fh  
10h  
DSP  
Interface  
3
Anti-  
aliasing  
Filter  
Digital Filter  
RXIP  
RXIN  
RXI 02h  
Control  
Data  
CONTROL  
DATA  
A/D  
A/D  
Analog  
Mode (LPF)  
10  
10  
4
10  
Sample  
Register  
Address  
ADDRESS  
Anti-  
aliasing  
Filter  
RXQN  
RXQP  
Digital  
Mode (SQRC)  
RXQ 03h  
Internal  
RESET  
Power On  
RESET  
RSINL  
Low-  
Pass  
Filter  
Wide-band  
Data  
Demodulator  
WBD  
Register  
8
00h  
FM  
RSOUTH  
5
RSOUTL  
SINT  
MCCLK  
CSCLK  
CMCLK  
WBD  
Control  
01h  
00h  
5
Internal  
Clocks  
AUX  
D/As  
Clock  
Generation  
and  
8
8
8
XTAL  
MCLKIN  
MCLKOUT  
AGC  
AFC  
D/A  
D/A  
D/A  
09h(D)  
Clock  
Oscillator  
38.88MHz  
Timing  
Adjustment  
Logic  
8
TX  
0Ah(D)  
VCM  
Common Mode Input  
Control  
Registers  
7
8
Bias  
Control  
RBIAS  
0Bh(D)  
PWRCONT  
Vref  
10  
8
Ref  
Gen  
PAEN  
OUT1  
FMRXEN  
IQRXEN  
TXEN  
VHR  
0Ch  
DStatCtrl  
Register  
8
10  
REFCAP  
Power  
Control  
MWBDFINT  
SCEN  
0Eh  
MStatCtrl  
Register  
SYNOL  
TXONIND  
DWBDINT  
CINT  
DINT  
8
8
8
8
DSP to  
Microcontroller  
FIFO  
06h  
01h  
06h  
01h  
Microcontroller  
to DSP FIFO  
SYNCLK  
SYNDTA  
Synthesizer  
Interface  
8
03h – 09h  
3
SYNLE  
[2:0]  
Micro-  
controller  
Interface  
RSSI  
0Bh  
RSSI  
BAT  
6
8
5
8
Control  
CONTROL  
DATA  
A/D  
D/A  
BAT  
0Ch  
8
Data  
Address  
ADDRESS  
4
4
LCD  
0Dh  
LCDCONTR  
1–2  
 
1.3 Pin Assignments  
PZ PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
8
DV  
DD  
BAT  
RSSI  
AV REF  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DSPA0  
DSPA1  
DSPA2  
DSPA3  
DD  
FM  
RXQN  
RXQP  
DSPCSL  
DSPRW  
DSPSTRBL  
MCLKOUT  
XTAL  
AV RX  
DD  
RXIN  
RXIP  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
AGC  
AFC  
DV  
SS  
AV RX  
MCLKIN  
SS  
V
DV  
SS  
DD  
VHR  
VCM  
PWRCONT  
TXIP  
MCCLK  
RSOUTL  
RSOUTH  
RSINL  
MCD7  
TXIN  
AV TX  
MCD6  
MCD5  
MCD4  
MCD3  
MCD2  
MCD1  
MCD0  
DD  
TXQP  
TXQN  
AV TX  
SS  
TXEN  
TXONIND  
PAEN  
1–3  
 
1.4 Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
AFC  
NO.  
11  
O
O
Automatic frequency control. The AFC DAC output provides the means to adjust  
system temperature-compensated reference oscillator (TCXO).  
AGC  
10  
3
Automatic gain control. The AGC digital-to-analog converter (DAC) output can be  
used to control the gain of system receiver circuits.  
AV REF  
DD  
Analog supply voltage for FM receive path. Power applied to AV REF powers the  
DD  
FM receive path circuitry.  
AV RX  
DD  
7
Analogsupplyvoltageforreceivepath. PowerappliedtoAV RXpowersthereceive  
DD  
path circuitry.  
AV TX  
DD  
19  
Analog supply voltage for transmit path. Power applied to AV TX powers the  
DD  
transmit path circuitry.  
AV REF  
SS  
98  
12  
22  
1
I
Analog ground for REFCAP  
Analog ground for receive path  
Analog ground for transmit path  
AV RX  
SS  
AV TX  
SS  
BAT  
Battery strength monitor. A sample of the battery voltage is applied to BAT, and this  
sample monitors the battery strength.  
CINT  
77  
O
Controller data interrupt. CINT is the microcontroller data interrupt (active low) signal  
that is sent to the DSP. CINT is caused by a microcontroller write to the Send-C  
interrupt register location.  
CMCLK  
CSCLK  
DINT  
92  
93  
49  
O
O
O
Codec master clock. CMCLK provides a 2.048-MHz clock that is used as the master  
clock and bit clock for the speech codec.  
Codec sample clock. CSCLK provides an 8-kHz frame synchronization pulse for the  
speech codec. CSCLK is also connected to the DSP for speech sample interrupts.  
Microcontroller interrupt request. DINT is output when the DSP writes to the SEND  
DINT register location. DINT can be active high or low according to the levels of the  
MTS0 and MTS1 signals.  
DSPA0  
DSPA1  
DSPA2  
DSPA3  
DSPCSL  
74  
73  
72  
71  
70  
I
DSP 4-bit parallel address bus. DSPA0 through DSPA3 provides the address bus for  
the DSP interface. DSPA3 is the MSB, and DSPA0 is the LSB.  
I
DSP chip select (active low). A low signal at DSPCSL enables the specific DSP  
addressed.  
DSPD0  
DSPD1  
DSPD2  
DSPD3  
DSPD4  
DSPD5  
DSPD6  
DSPD7  
DSPD8  
DSPD9  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
I/O/Z DSP 10-bit parallel data bus. DSPD0 through DSPD9 provide a 10-bit data bus for the  
DSP. DSPD9 is the MSB, and DSPD0 is the LSB.  
Z = high impedance  
1–4  
 
1.4 Terminal Functions (Continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
DSPRW  
69  
I
DSP read/write. A high on DSPRW enables a read operation and a low enables  
a write operation to the DSP.  
DSPSTRBL  
68  
I
DSP strobe low. The DSPSTRL (active low) is used in conjunction with DSPCSL  
to enable read/write operations to the DSP.  
DV  
DV  
35, 45, 63,  
75, 90  
O
Digital power supply. All supply terminals must be connected together.  
DD  
SS  
34, 46, 65,  
76, 91  
Digital ground. All supply terminals must be connected together.  
DWBDINT  
78  
DSP wide-band data interrupt (active low). The DWBDINT output goes low to  
indicate that the wide-band data (WBD) demodulation circuits have traffic on  
them.  
FM  
4
95  
96  
33  
I
Frequency modulation. FM terminal is connected to the output of the FM  
discriminator.  
FMRXEN  
IQRXEN  
LCDCONTR  
O
O
O
FM receive path enable. A high output from FMRXEN can be used to enable the  
power for the receiver FM path.  
In-phase and quadrature receive path enable. A high output on IQRXEN can be  
used to enable the power for receiver I/Q path.  
Liquid-crystal display (LCD) contrast. This LCDCONTR control DAC can be  
used to control the amount of drive to the liquid crystal display.  
MCLKOUT  
MCA0  
67  
40  
41  
42  
43  
44  
62  
O
I
Master clock out. MCLKOUT is a buffered version of MCLKIN.  
Microcontroller 5-bit parallel address bus. MCA0 through MCA4 provide a 5-bit  
bus to address the microcontroller. MCA4 is the MSB, and MCA0 is the LSB.  
MCA1  
MCA2  
MCA3  
MCA4  
MCCLK  
O
I
Microcontroller clock. MCCLK provides an adjustable frequency with 1.215 MHz  
at powerup.  
MCCSH  
MCCSL  
39  
38  
Microcontroller interface chip-select. A high at MCCSH in conjunction with a low  
at MCCSL allows the microcontroller to read from or write to the TCM4300.  
I
Microcontroller interface chip-select. A low at MCCSL in conjunction with a high  
at the MCCSH allows the microcontroller to read from or write to the TCM4300.  
MCD0  
MCD1  
MCD2  
MCD3  
MCD4  
MCD5  
MCD6  
MCD7  
51  
52  
53  
54  
55  
56  
57  
58  
I/O/Z Microcontroller 8-bit parallel data bus. MCD0 through MCD7 provides an 8-bit  
parallel data bus to send/receive data to/from the microcontroller. MCD7 is the  
MSB, and MCD0 is the LSB.  
Z = high impedance  
1–5  
 
1.4 Terminal Functions (Continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
MCDS  
48  
I
I
Microcontroller data strobe. MCDS is configured by the signals present on MTS0 and  
MTS1.  
MCLKIN  
64  
Master clock input. The MCLKIN frequency input requirement is 38.88 MHz ±100 ppm.  
A crystal can be connected between MCLKIN and XTAL to provide an oscillator circuit.  
As an alternative, XTAL can be left open and an external TTL/CMOS-level clock signal  
can be connected to MCLKIN.  
MCRW  
MTS0  
47  
36  
I
I
Microcontroller read/write. Microcontroller read/write operations are selected in  
accordance with the signals present on MTS0 and MTS1.  
Microcontroller type select configuration-control inputs. The interface is controlled by  
MTS (1:0) as follows:  
00 – Intel microcontroller interface characteristics  
10 – Mitsubishi and Motorola microcontroller 16-bit bus interface characteristics  
01 – Motorola microcontroller 8-bit bus characteristics  
11 – Reserved  
MTS1  
37  
50  
I
MWBDFINT  
O
Microcontroller interrupt request. A wide-band data-ready interrupt is output when the  
WBD demodulator is in analog mode or when a frame interrupt is sent by the DSP in  
digital mode. MWDBFINT can be active high or low according to the levels of the MTS0  
and MTS1 signals.  
OUT1  
PAEN  
26  
25  
O
O
Output number 1. OUT1 provides a user-defined general purpose data or control signal.  
Power amplifier enable. PAEN can be used to enable the transmit power amplifier. This  
signal is active high.  
PWRCONT  
RBIAS  
16  
99  
O
I
Power amplifier (PA) power control. The PWRCONT DAC output can be used to control  
the amount of power output from the PA.  
Input for bias current-setting resistor. To achieve correct bias voltage, a 100-k, 1%  
tolerance resistor connected between RBIAS and AV  
is recommended.  
SS  
REFCAP  
100  
I
Reference decoupling capacitor. For proper decoupling, It is recommended that a  
3.3 µFcapacitorinparallelwitha470-pFcapacitorbeconnectedbetweenREFCAPand  
ground.  
RSINL  
RSSI  
59  
2
I
I
Reset input low. An active low applied to RSINL resets the TCM4300.  
Received signal strength indicator. RSSI samples received signal strength.  
RSOUTH  
60  
O
Reset out high. An active high is output from RSOUTH for 10 ms after the TCM4300 is  
powered up.  
RSOUTL  
RXIN  
61  
8
O
I
Reset out low. An active low is output from RSOUTL for 10 ms after the TCM4300 is  
powered up.  
Negative receive input. The in-phase differential negative baseband received signal is  
applied to RXIN.  
RXIP  
9
I
Positive receive input. The in-phase differential positive baseband received signal is  
applied to RXIP.  
RXQN  
RXQP  
5
I
Negative receive input. The quadrature negative baseband received signal is applied  
to RXQN.  
6
I
Positive receive input. The quadrature differential positive baseband received signal is  
applied to RXQP.  
Intel is a trademark of Intel Corporation.  
Mitsubishi is a trademark of Mitsubishi Inc.  
Motorola is a trademark of Motorola, Inc.  
1–6  
 
1.4 Terminal Functions (Continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
SCEN  
94  
O
O
Speech CODEC enable. A high out from SCEN can enable the speech CODEC.  
SINT  
79  
Sample interrupt. SINT is active low. In the analog mode, SINT occurs at 40 kHz; in the  
digital mode, SINT occurs at 48.6 kHz.  
SYNCLK  
SYNDTA  
SYNLE0  
SYNLE1  
SYNLE2  
SYNOL  
TXEN  
32  
31  
28  
29  
30  
27  
23  
O
O
O
O
O
I
Synthesizer clock. SYNCLK clocks the serial data stream.  
Synthesizer serial-data. SYNDTA provides the serial bit stream output.  
Synthesizer 0, 1, and 2 latch enables. An active high on SYNLE0, SYNLE1, and  
SYNLE2 indicates that the latch is enabled.  
Synthesizer out-of-lock. An active high at SYNOL indicates a synthesizer is not locked.  
O
Transmit power enable. An active high output from TXEN can be used to enable various  
system transmitter-circuit devices.  
TXIN  
18  
17  
24  
21  
20  
15  
14  
O
O
I
In-phase differential negative baseband transmit. The negative component of the  
differential baseband transmit signal is output from TXIN.  
TXIP  
In-phase differential positive baseband transmit. The positive component of the  
differential baseband transmit signal is output from TXIP.  
TXONIND  
TXQN  
TXQP  
VCM  
Transmit on indicator. A signal is applied to TXONIND to indicate that power is applied  
to the power amplifier.  
O
O
I
Quadrature differential negative baseband transmit. The negative component of the  
quadrature differential transmit signal is output from TXQN.  
Quadrature differential positive baseband transmit. The positive component of the  
quadrature differential transmit signal is output from TXQP.  
Voltagecommonmode. VCMestablishesthedcoperatingpointfortransmitoutputsand  
can be tied to VHR.  
VHR  
O
Voltage half-rail. The voltage level at VHR is approximately 0.5 × AV . VHR  
DD  
establishes the dc operating point for receive inputs.  
V
SS  
XTAL  
13, 97  
66  
I
Substrate ground  
Crystal input. A crystal connected between XTAL and MCLIN forms an oscillator circuit.  
1–7  
 
2 Electrical Specifications  
This section lists the electrical specifications, the absolute maximum ratings, the recommended operating  
conditions and operating characteristics for the TCM4300 Advanced RF Cellular Telephone Interface  
Circuit.  
2.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range  
(unless otherwise noted)  
Supply voltage range:  
DV  
AV  
(see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . .  
(see Notes 2 and 3) . . . . . . . . . . . . . . . . . . . . . . . V 0.3 V to DV  
V
0.3 V to AV  
+0.3 V  
+0.3 V  
+0.3 V  
+0.3 V  
DD  
DD  
SS  
DD  
DD  
DD  
DD  
SS  
SS  
V
Input voltage range, V : Digital signals . . . . . . . . . . . . . . . . . V 0.3 V to DV  
I
Analog signals . . . . . . . . . . . . . . . .  
0.3 V to AV  
SS  
Output voltage range, V : Digital signals . . . . . . . . . . . . . . . . . . . . . . . . . . . V to DV  
O
SS  
DD  
DD  
Analog signals . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V
to AV  
SS  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These  
are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated  
under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for  
extended periods may affect device reliability.  
NOTES: 1. Voltage values are with respect DV  
.
SS  
2. Maximum supplied voltage should not exceed 6 V.  
3. Voltage values are with respect to AV  
.
SS  
2.2 Dissipation Rating Table  
T
25°C  
DERATING FACTOR  
T
= 85°C  
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
A
PZ  
1530 mW  
15.25 mW/°C  
615 mW  
2–1  
 
2.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
V
Supply voltage, DV  
3
5.5  
DD  
High-level input voltage, V  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
0.7 DV  
DV +0.3  
DD  
V
IH  
DD  
Low-level input voltage, V  
IL  
High-level output voltage, V  
0
0.3 DV  
V
DD  
0.7 DV  
DV  
DD  
0.5  
V
OH  
OL  
DD  
Low-level output voltage, V  
0
V
High-level output current at 3 V, I  
2
2
2
2
mA  
mA  
mA  
mA  
pF  
V
OH  
Low-level output current at 3 V, I  
OL  
High-level output current at 5 V, I  
OH  
Low-level output current at 5 V, I  
OL  
Load capacitance, transmit I and Q channel outputs  
VCM input voltage range, transmit I and Q channel outputs  
Load resistance, auxiliary DACs  
50  
1.3  
AV –1.3  
DD  
10  
50  
kΩ  
pF  
°C  
Load capacitance, auxiliary DACs  
Operating free-air temperature, T  
40  
85  
A
2.4 Electrical Characteristics Over Full Range Of Operating Conditions (Unless  
Otherwise Noted)  
2.4.1  
Power Consumption  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
75  
UNIT  
DV  
DV  
DV  
DV  
DV  
DV  
DV  
DV  
DV  
DV  
DV  
DV  
= 3 V,  
AV  
AV  
AV  
AV  
AV  
AV  
AV  
AV  
AV  
AV  
AV  
AV  
= 3 V  
65  
250  
55  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
Analog transmitting and receiving  
Digital receiving  
mW  
= 5.5 V,  
= 3 V,  
= 5.5 V  
= 3 V  
275  
60  
mW  
mW  
= 5.5 V,  
= 3 V,  
= 5.5 V  
= 3 V  
225  
55  
250  
70  
Digital transmitting  
= 5.5 V,  
= 3 V,  
= 5.5 V  
= 3 V  
210  
33  
250  
40  
MCLKOUT enabled  
MCLKOUT disabled  
MCLKOUT enabled  
MCLKOUT disabled  
= 3 V,  
= 3 V  
14  
17  
Idle mode  
mW  
mW  
= 5.5 V,  
= 5.5 V,  
= 3 V,  
= 5.5 V  
= 5.5 V  
= 3 V  
150  
80  
160  
90  
50  
60  
Digital mode, 1/3 transmitting +1/3 receiving  
+ 1/3 standby  
= 5.5 V,  
= 5.5 V  
205  
220  
All typical values are at T = 25°C.  
A
2.4.2  
Reference Characteristics  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
V
High-level output voltage  
0.5 AV 0.2  
DD  
0.5 AV +0.2  
DD  
V
OH(VHR)  
FMVOX or IQRXEN  
or TXEN = high  
80  
40  
100  
r
O
Output resistance  
FMVOX or IQRXEN  
or TXEN = low  
15  
kΩ  
All typical values are at DV  
DD  
= 5 V, AV  
= 5 V, and T = 25°C  
DD  
A
2–2  
 
2.4.3  
Terminal Impedance  
FUNCTION  
MIN TYP  
MAX  
UNIT  
kΩ  
Receive channel input impedance (single ended), RXIP/N and RXQP/N  
Transmit channel output impedance (single ended), TXIP/N and TXQP/N  
FM input impedance, WBD  
40  
40  
25  
70  
50  
100  
200  
240  
180  
kΩ  
MCLKOUT at 3.3 V  
MCLKOUT impedance  
MCLKOUT at 5 V  
All typical values are at DV  
DD  
= 5 V, AV  
= 5 V, and T = 25°C, unless otherwise specified.  
DD  
A
2.4.4  
RXIP, RXIN, RXQP, and RXQN Inputs (AV  
= 3 V, 4.5 V, 5 V)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input voltage range  
0.3  
AV 0.3  
DD  
V
Differential  
0.5  
0.5  
Input voltage for full-  
scale digital output  
Vp-p  
Single ended  
Differential  
0.125  
0.125  
Nominal operating  
level  
Vp-p  
Single ended  
Input CMRR (RXI, RXQ)  
45  
dB  
Sampling frequency, SINT (digital  
mode)  
48.6  
40  
kHz  
Sampling frequency, SINT (analog  
mode)  
kHz  
Receive error vector magnitude (EVM)  
I/Q sample timing skew  
5%  
50  
10  
58  
1
6%  
Input signal 0 – 15 kHz  
ns  
bits  
dB  
A/D resolution  
Signal to noise-plus distortion  
Integral nonlinearity  
Input at full scale – 1 dB  
0 dB to 60 dB input  
54  
LSB  
Gain error (I or Q channel)  
Gain mismatch between I and Q  
Differential dc offset voltage  
FM input sensitivity, full scale  
±7%  
±0.3  
±30  
dB  
mV  
2.5  
40  
Vp-p  
mV  
dB  
(
14 kHz deviation)  
FM input dc offset (relative to VHR)  
±80  
50  
FM input idle channel noise, below  
full-scale input  
FM gain error  
±6%  
Power supply rejection  
f = 0 kHz to 15 kHz  
dB  
Provides 12 dB headroom for AGC fading conditions.  
2–3  
 
2.4.5  
Transmit I and Q Channel Outputs  
PARAMETER  
MIN  
TYP  
2.24  
1.12  
1.5  
MAX  
UNIT  
Differential  
Peak output voltage full scale, centered at VCM  
Vp  
Single ended  
Differential  
Nominal output-level (constellation radius) centered  
at VCM  
V
Single ended  
0.75  
±200  
3%  
Low-level drift  
PPM/°C  
Transmit error vector magnitude (EVM)  
Resolution  
4%  
8
bits  
dB  
S/(N+D) ratio at differential outputs  
Gain error (I or Q channel)  
48  
52  
±8%  
±12%  
Gain mismatch between I and Q  
Gain sampling mismatch between I and Q  
Zero code error differential  
±0.3  
dB  
ns  
20  
±80  
mV  
mV  
Zero code error, each output, with respect to VCM  
±80  
Zero code error, I to Q, with respect to other channel (differential or  
single ended)  
±10  
mV  
Load impedance, between P and N terminals  
Transmit offset DACs I and Q resolution  
10  
kΩ  
bits  
mV  
mV  
mV  
LSB  
LSB  
6
3.4  
Transmit offset DACs I and Q average step size  
Transmit offset DACs I and Q full-scale positive output  
Transmit offset DACs I and Q full-scale negative output  
Transmit offset DACs differential nonlinearity  
Transmit offset DACs integral nonlinearity  
2.9  
3.9  
105.4  
108.8  
±1.1  
±1.1  
2.4.6  
Auxiliary D/A Converters  
PARAMETER  
TEST CONDITIONS  
MIN  
0.2  
0.2  
0.2  
TYP  
MAX  
2.5  
4
UNIT  
AV  
AV  
AV  
> 3 V ,  
AUXFS [1:0] = 00  
DD  
DD  
DD  
Output range  
> 4.5 V , AUXFS [1:0] = 10  
V
> 5 V ,  
AUXFS [1:0] = 11  
4.5  
Resolution AGC, AFC, PWRCONT  
DACs  
8
4
bits  
bits  
Resolution LCDCONTR DAC  
Gain + offset error (full scale) AGC,  
AFC, PWRCONT DAC  
±3%  
Gain + offset error (full scale)  
LCDCONTR DAC  
±7%  
Differential nonlinearity  
Integral nonlinearity  
±0.75  
±0.75  
±1  
LSB  
LSB  
±1  
Range settings depends only on AUXFS [1:0]. The supply voltage is not detected.  
2–4  
 
2.4.7  
Auxiliary D/A Converters Slope (AGC, AFC, PWRCONT)  
NOMINAL OUTPUT VOLTAGE  
NOMINAL LSB  
NOMINAL OUTPUT VOLTAGE  
FOR DIGITAL CODE = 256†  
(MAX VALUE)  
AUXFS[1:0]  
SETTING  
FOR DIGITAL CODE = 128  
SLOPE  
VALUE  
(V)  
(MIDRANGE)  
(V)  
(V)  
00  
01  
10  
11  
2.5/256  
Do not use  
4/256  
0.0098  
Do not use  
0.0156  
1.25  
Do not use  
2
2.5  
Do not use  
4
4.5/256  
0.0176  
2.25  
4.5  
The maximum input code is 255. The value shown for 256 is extrapolated.  
2.4.8  
Auxiliary D/A Converters Slope (LCDCONTR)  
NOMINAL OUTPUT VOLT-  
AGE FOR DIGITAL CODE = 8  
NOMINAL OUTPUT VOLTAGE  
FOR DIGITAL CODE = 16  
NOMINAL LSB  
VALUE  
§
AUXFS[1:0]  
SETTING  
SLOPE  
(MIDRANGE)  
(V)  
(MAX VALUE)  
(V)  
(V)  
00  
01  
10  
11  
2.5/16  
Do not use  
4/16  
0.1563  
Do not use  
0.2500  
1.25  
Do not use  
2
2.5  
Do not use  
4
4.5/16  
0.2813  
2.25  
4.5  
The maximum input code is 15. The value shown for 16 is extrapolated.  
2.4.9  
RSSI/Battery A/D Converter  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
Input range  
AV  
= 3 V, 4.5 V, 5 V  
0.2  
2
DD  
Resolution  
8
20  
bits  
µs  
Conversion time  
AV  
= 3 V, 4.5 V, 5 V  
DD  
Gain + offset error (full scale)  
Differential nonlinearity  
Integral nonlinearity  
Input resistance  
±3%  
±0.75  
±0.75  
2
±4%  
±1  
LSB  
LSB  
MΩ  
±1  
1
2–5  
 
2.5 Operating Characteristics Over Full Range of Operating Conditions  
(Unless Otherwise Noted)  
2.5.1  
Receive (RX) Channel Frequency Response (RXI, RXQ Input in Digital Mode)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.125 V peak-to-peak, 0 kHz to 8 kHz (see Note 4)  
0.125 V peak-to-peak, 8 kHz to 15 kHz (see Note 5)  
0.125 V peak-to-peak, 16.2 kHz to 18 kHz (see Note 5)  
0.125 V peak-to-peak, 18 kHz to 45 kHz (see Note 5)  
0.125 V peak-to-peak, 45 kHz to 75 kHz (see Note 5)  
0.125 V peak-to-peak, > 75 kHz  
±0.5 ±0.75  
±1  
26  
30  
46  
60  
Frequency  
response  
dB  
Peak-to-peak  
group delay  
distortion  
0.125 V peak-to-peak, 0 kHz to 15 kHz  
2
µs  
Absolute channel  
delay, RXI, Q IN to 0.125 V peak-to-peak, 0 kHz to 15 kHz  
digital OUT  
325  
µs  
NOTES: 4. Deviation from ideal 0.35 square-root raised-cosine (SQRC) response  
5. Stopband  
2.5.2  
Receive (RX) Channel Frequency Response (FM Input in Analog Mode)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
2.5 V peak-to-peak, 0 kHz to 6 kHz (see Note 6)  
2.5 V peak-to-peak, 20 kHz to 30 kHz (see Note 5)  
2.5 V peak-to-peak, 34 kHz to 46 kHz (see Note 7)  
±0.5  
Frequency response  
18  
48  
dB  
Peak-to-peak group  
delay distortion  
2.5 V peak-to-peak, 0 kHz to 6 kHz  
2
µs  
Absolute channel delay 2.5 V peak-to-peak, 0 kHz to 6 kHz  
400  
µs  
NOTES: 5. Stopband  
6. Ripple magnitude  
7. Stopband and multiples of stopband  
2.5.3  
Transmit (TX) Channel Frequency Response (Digital Mode)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
±0.3  
±0.5  
UNIT  
0 kHz to 8 kHz (see Note 4)  
8 kHz to 15 kHz (see Note 4)  
20 kHz to 45 kHz (see Note 5)  
45 kHz to 75 kHz (see Note 5)  
> 75 kHz (see Note 5)  
29  
55  
60  
60  
Frequency response  
dB  
Any 30 kHz band centered at > 90 kHz (see Note 5)  
Peak-to-peak group  
delay distortion  
0 kHz to 15 kHz  
3
µs  
Absolute channel delay  
0 kHz to 15 kHz  
320  
µs  
NOTES: 4. Deviation from ideal 0.35 square-root raised-cosine (SQRC) response  
5. Stopband  
2–6  
 
2.5.4  
Transmit (TX) Channel Frequency Response (Analog Mode)  
PARAMETER  
TEST CONDITIONS  
0 kHz to 8 kHz (see Note 4)  
MIN  
TYP  
MAX  
±0.5  
±0.5  
UNIT  
8 kHz to 15 kHz (see Note 4)  
20 kHz to 45 kHz (see Note 5)  
45 kHz to 75 kHz (see Note 5)  
> 75 kHz (see Note 5)  
31  
70  
70  
70  
Frequency response  
dB  
Any 30 kHz band centered at > 90 kHz (see Note 5)  
Peak-to-peak group  
delay distortion  
0 kHz to 15 kHz  
3
µs  
Absolute channel delay  
0 kHz to 15 kHz  
540  
µs  
NOTES: 4. Ripple magnitude  
5. Stopband  
2–7  
 
2–8  
 
3 Parameter Measurement Information  
This section contains the timing waveforms and parameter values for MCLKOUT and several  
microcontroller interface configurations possible when using the TCM4300. The timing parameters are  
contained in Section 3.1 through Section 3.11. The timing waveforms are shown in Figures 3–1 through  
3–11. All parameters shown in the separate waveforms have their values listed in an associated table. Not  
all parameter values listed in the tables are necessarily shown in an associated waveform.  
3.1 MCLKOUT Timing Requirements (see Figure 3–1 and Note 1)  
MIN NOM  
MAX  
12  
12  
4
UNIT  
ns  
t
t
t
t
Pulse duration , MCLKOUT high  
Pulse duration, MCLKOUT low  
Rise time, MCLKOUT  
9
9
2
2
10  
10  
3
wH  
wL  
r
ns  
ns  
Fall time, MCLKOUT  
3
4
ns  
f
NOTE 1: Tested with 15 pF loading on MCLKOUT  
t
w
H
t
w
L
V
OH  
MCLKOUT  
V
OL  
t
r
t
f
Figure 3–1. MCLKOUT Timing Diagram  
3–1  
 
3.2 TCM4300 to Microcontroller Interface Timing Requirements (Mitsubishi  
Read Cycle) (see Figure 3–2 and Note 2)  
ALTERNATE  
SYMBOL  
PARAMETER  
MIN  
0
MAX  
UNIT  
ns  
Setup time, read/write MCRW stable before falling edge of  
strobe MCDS  
t
t
t
t
t
TRW  
TRW  
su(R/W)  
h(R/W)  
su(RA)  
h(RA)  
(SU)  
(HO)  
(SU)  
(HO)  
(EN)  
Hold time, read/write MCRW stable after rising edge of  
strobe MCDS  
10  
0
ns  
Setup time, read address MCS stable before falling edge of  
strobe MCDS  
TRA  
TRA  
TRD  
TRD  
ns  
Hold time, read address MCA stable after rising edge of  
strobe MCDS  
10  
10  
ns  
Enable time, read data on falling edge of strobe MCDS to  
TCM4300 driving data bus MCD  
ns  
en(RD)  
Read data valid time on falling edge of strobe MCDS to  
valid data MCD  
t
t
t
50  
10  
28  
ns  
ns  
ns  
v(R)  
(DV)  
(INV)  
(DIS)  
Data MCD invalid after rising edge of strobe MCDS  
TRD  
TRD  
inv  
Disable time, read data. TCM4300 releases MCD data bus  
after rising edge of strobe MCDS  
dis(RD)  
Hold time, chip select MCCSH and MCCSL stable before  
rising edge of strobe MCDS  
t
TCS  
0
0
ns  
ns  
h(CS)  
(HO)  
Setup time, chip select MCCSH and MCCSL stable before  
falling edge of strobe MCDS  
t
TCS  
su(CS)  
(SU)  
NOTE 2: Timings are based upon Mitsubishi 37732S4 (16 MHz) and Mitsubishi 3772S4L (8 MHz).  
90%  
10%  
90%  
10%  
MCDS  
(see Note A)  
t
t
su(R/W)  
h(R/W)  
90%  
90%  
MCRW  
t
su(RA)  
t
h(RA)  
MCA4–MCA0  
t
v(R)  
t
dis(RD)  
t
t
inv  
t
en(RD)  
MCD7–MCD0  
MCCSH  
90%  
90%  
10%  
t
su(CS)  
h(CS)  
MCCSL  
10%  
NOTE A: Chip selection is defined as both MCCS and MCDS active.  
Figure 3–2. Microcontroller Interface Timing Requirements  
(Mitsubishi Configuration Read Cycle, MTS [1:0] = 10)  
3–2  
 
3.3 TCM4300 to Microcontroller Interface Timing Requirements (Mitsubishi  
Write Cycle) (see Figure 3–3 and Note 2)  
ALTERNATE  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNIT  
Setup time, read/write MCRW stable before falling edge of  
strobe MCDS  
t
t
t
t
t
TRW  
TRW  
TWA  
TWA  
TWD  
TWD  
0
ns  
su(R/W)  
h(R/W)  
su(WA)  
h(WA)  
(SU)  
(HO)  
(SU)  
(HO)  
(SU)  
Hold time, read/write MCRW stable after rising edge of  
strobe MCDS  
10  
0
ns  
Setup time, write/address MCA stable before falling edge  
of strobe MCDS  
ns  
Hold time, write address MCA stable after rising edge of  
strobe MCDS  
10  
14  
ns  
Setup time, write data stable MCD before rising edge of  
strobe MCDS  
ns  
su(W)  
Hold time, write data stable MCD after rising edge of strobe  
MCDS  
t
t
t
0
60  
0
ns  
ns  
ns  
h(W)  
(HO)  
(STB)  
(HO)  
Pulse duration, write strobe pulse width low on MCDS  
TWR  
TCS  
w(WSTB)  
h(CS)  
Hold time, chip select MCCSH and MCCSL stable before  
rising edge of strobe MCDS  
Setup time, chip select stable MCCSH and MCCSL before  
falling edge of strobe MCDS  
t
TCS  
(SU)  
0
ns  
su(CS)  
NOTE 2: Timings based upon Mitsubishi 37732S4 (16 MHz) and Mitsubishi 3772S4L (8 MHz).  
t
w(WSTB)  
90%  
90%  
MCDS  
(see Note A)  
10%  
10%  
t
t
h(R/W)  
su(R/W)  
MCRW  
10%  
10%  
t
su(WA)  
t
su(WA)  
MCA4–MCA0  
t
su(W)  
t
h(W)  
MCD7–MCD0  
MCCSH  
90%  
90%  
t
h(CS)  
t
su(CS)  
MCCSL  
10%  
10%  
NOTE A: Chip selection is defined as both MCCS and MCDS active.  
Figure 3–3. Microcontroller Interface Timing Requirements  
(Mitsubishi Configuration Write Cycle, MTS [1:0] = 10)  
3–3  
 
3.4 TCM4300 to Microcontroller Interface Timing Requirements (Intel Read  
Cycle) (see Figure 3–4 and Note 3)  
ALTERNATE  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNIT  
Setup time, read address MCA stable before falling edge of  
strobe MCDS  
t
t
t
TRA  
TRA  
TRD  
TRD  
0
ns  
su(RA)  
(SU)  
(HO)  
(EN)  
Hold time, read address MCA stable after rising edge of  
strobe MCDS  
10  
10  
ns  
h(RA)  
Enable time, read data on falling edge of strobe MCDS to  
TCM4300 driving data bus MCD  
ns  
en(RD)  
Valid time, read data on falling edge of strobe MCDS to  
valid data MCD  
t
t
t
50  
10  
28  
ns  
ns  
ns  
v(RD)  
(DV)  
(INV)  
(DIS)  
Data MCD invalid after rising edge of strobe MCDS  
TRD  
TRD  
inv  
Disable time, read data. TCM4300 releases MCD data bus  
after rising edge of strobe MCDS  
dis(RD)  
Setup time, chip select MCCSH and MCCSL stable before  
falling edge of strobe MCDS  
t
TCS  
0
0
ns  
ns  
su(CS)  
h(CS)  
(SU)  
(HO)  
Hold time, chip select MCCSH and MCCSL stable before  
rising edge of strobe MCDS  
t
TCS  
NOTE 3: Timings are based upon Intel 80C186 (16 MHz).  
90%  
10%  
90%  
MCDS  
(see Note A)  
10%  
MCRW  
t
su(RA)  
t
h(RA)  
MCA4–MCA0  
t
v(RD)  
t
dis(RD)  
t
t
inv  
t
en(RD)  
MCD7–MCD0  
MCCSH  
90%  
90%  
10%  
h(CS)  
t
su(CS)  
MCCSL  
10%  
NOTE A: Chip selection is defined as both MCCS and MCDS active.  
Figure 3–4. Microcontroller Interface Timing Requirements  
(Intel Configuration Read Cycle, MTS [1:0] = 00)  
3–4  
 
3.5 TCM4300 to Microcontroller Interface Timing Requirements (Intel Write  
Cycle) (see Figure 3–5 and Note 3)  
ALTERNATE  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNIT  
Setup time, write address MCA stable before falling edge  
of strobe MCRW  
t
t
t
TWA  
TWA  
TWD  
TWD  
0
ns  
su(WA)  
h(WA)  
su(W)  
(SU)  
(HO)  
(SU)  
Hold time, write address MCA stable after rising edge of  
strobe MCRW  
10  
14  
ns  
Setup time, write data stable MCD before rising edge of  
strobe MCRW  
ns  
Hold time, write data stable MCD after rising edge of  
strobe MCRW  
t
t
t
0
60  
0
ns  
ns  
ns  
h(W)  
(HO)  
Pulse duration, write strobe pulse width low on MCRW  
TWR  
(STB)  
w(WSTB)  
su(CS)  
Setup time, chip select MCCSH and MCCSL stable before  
falling edge of strobe MCRW  
TCS  
(SU)  
(HO)  
Hold time, chip select MCCSH and MCCSL stable before  
rising edge of strobe MCRW  
t
TCS  
0
ns  
h(CS)  
NOTE 3: Timings are based upon Intel 8C186 (16 MHz).  
MCDS  
t
w(WSTB)  
90%  
90%  
MCRW  
(see Note A)  
10%  
10%  
t
t
h(WA)  
su(WA)  
MCA4–MCA0  
t
su(W)  
t
h(W)  
MCD7–MCD0  
MCCSH  
90%  
90%  
t
t
h(CS)  
su(CS)  
MCCSL  
10%  
10%  
NOTE A: Chip selection is defined as both MCCS and MCRW active.  
Figure 3–5. Microcontroller Interface Timing Requirements  
(Intel Configuration Write Cycle, MTS [1:0] = 00)  
3–5  
 
3.6 TCM4300 to Microcontroller Interface Timing Requirements (Motorola  
16-Bit Read Cycle) (see Figure 3–6 and Note 4)  
ALTERNATE  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNIT  
Setup time, read/write MCRW stable before falling edge of  
strobe MCDS  
t
t
t
t
t
TRW  
TRW  
0
ns  
su(R/W)  
h(R/W)  
su(RA)  
h(RA)  
(SU)  
(HO)  
(SU)  
(HO)  
(EN)  
Hold time, read/write MCRW stable after rising edge of  
strobe MCDS  
10  
0
ns  
Setup time, read address MCA stable before falling edge of  
strobe MCDS  
TRA  
TRA  
TRD  
TRD  
ns  
Hold time, read address MCA stable after rising edge of  
strobe MCDS  
10  
10  
ns  
Enable time, read data on falling edge of strobe MCDS to  
TCM4300 driving data bus MCD  
ns  
en(RD)  
Valid time, read data on falling edge of strobe MCDS to  
valid data MCD  
t
t
t
50  
10  
28  
ns  
ns  
ns  
v(RD)  
(DV)  
(INV)  
(DIS)  
Data (MCD) invalid after rising edge of strobe MCDS  
TRD  
TRD  
inv  
Disable time, read data. TCM4300 releases MCD data bus  
after rising edge of strobe MCDS  
dis(RD)  
Hold time, chip select MCCSH and MCCSL stable before  
falling edge of strobe MCDS  
t
TCS  
0
0
ns  
ns  
h(CS)  
(HO)  
Setup time, chip select stable MCCSH and MCCSL before  
rising edge of strobe MCDS  
t
TCS  
(SU)  
su(CS)  
NOTE 4: Timings are based upon Motorola 68HC000 (16.67 MHz) and Motorola 68302 (16 MHz).  
90%  
10%  
90%  
10%  
MCDS  
(see Note A)  
t
t
h(R/W)  
90%  
su(R/W)  
90%  
MCRW  
t
su(RA)  
t
h(RA)  
MCA0–MCA4  
t
t
dis(RD)  
v(RD)  
t
t
t
en(RD)  
inv  
MCD0–MCD7  
MCCSH  
90%  
90%  
10%  
t
su(CS)  
h(CS)  
MCCSL  
10%  
NOTE A: Chip selection is defined as both MCCS and MCDS active.  
Figure 3–6. Microcontroller Interface Timing Requirements  
(Motorola 16-Bit Read Cycle, MTS [1:0] = 10)  
3–6  
 
3.7 TCM4300 to Microcontroller Interface Timing Requirements (Motorola  
16-Bit Write Cycle) (see Figure 3–7 and Note 4)  
ALTERNATE  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNIT  
Setup time, read/write MCRW stable before falling edge of  
strobe MCDS  
t
t
t
t
t
TRW  
TRW  
TWA  
TWA  
TWD  
TWD  
0
ns  
su(R/W)  
h(R/W)  
su(WA)  
h(WA)  
(SU)  
(HO)  
(SU)  
(HO)  
(SU)  
Hold time, read/write MCRW stable after rising edge of  
strobe MCDS  
10  
0
ns  
Setup time, write address MCA stable before falling edge  
of strobe MCDS  
ns  
Hold time, write address MCA stable after rising edge of  
strobe MCDS  
10  
14  
ns  
Setup time, write data stable MCD before rising edge of  
strobe MCDS  
ns  
su(W)  
Hold time, write data stable MCD after rising edge of strobe  
MCDS  
t
t
t
0
60  
0
ns  
ns  
ns  
h(W)  
(HO)  
(STB)  
(HO)  
Pulse duration, write strobe pulse width low on MCDS  
TWR  
TCS  
w(WSTB)  
h(CS)  
Hold time, chip select MCCSH and MCCSL stable before  
falling edge of strobe MCDS  
Setup time, chip select MCCSH and MCCSL stable before  
rising edge of strobe MCDS  
t
TCS  
(SU)  
0
ns  
su(CS)  
NOTE 4: Timings are based upon Motorola 68HC000 (16.67 MHz) and Motorola 68302 (16 MHz).  
t
w(WSTB)  
90%  
90%  
MCDS  
10%  
10%  
(see Note A)  
t
t
h(R/W)  
su(R/W)  
MCRW  
10%  
10%  
t
t
h(WA)  
su(WA)  
MCA0–MCA4  
t
su(W)  
t
h(W)  
MCD0–MCD7  
MCCSH  
90%  
90%  
t
t
h(CS)  
su(CS)  
MCCSL  
10%  
10%  
NOTE A: Chip selection is defined as both MCCS and MCDS active.  
Figure 3–7. Microcontroller Interface Timing Requirements  
(Motorola 16-Bit Write Cycle, MTS [1:0] = 10)  
3–7  
 
3.8 TCM4300 to Microcontroller Interface Timing Requirements (Motorola 8-Bit  
Read Cycle) (see Figure 3–8 and Note 5)  
ALTERNATE  
SYMBOL  
PARAMETER  
MIN  
0
MAX  
UNIT  
ns  
Setup time, read/write MCRW stable before rising edge of  
strobe MCDS  
t
t
t
t
t
TRW  
su(R/W)  
h(R/W)  
su(RA)  
h(RA)  
(SU)  
(HO)  
(SU)  
(HO)  
(EN)  
Hold time, read/write MCRW stable after falling edge of  
strobe MCDS  
TRW  
10  
0
ns  
Setup time, read address MCA stable before rising edge of  
strobe MCDS  
TRA  
TRA  
TRD  
TRD  
ns  
Hold time, read address MCA stable after falling edge of  
strobe MCDS  
10  
10  
ns  
Enable time, read data on rising edge of strobe MCDS to  
TCM4300 driving data bus MCD  
ns  
en(RD)  
Valid time, read data on rising edge of strobe MCDS to valid  
data MCD  
t
t
t
50  
10  
28  
ns  
ns  
ns  
v(RD)  
(DV)  
(INV)  
(DIS)  
Data MCD invalid after falling edge of strobe MCDS  
TRD  
TRD  
inv  
Disable time, read data. TCM4300 releases MDS data bus  
after falling edge of strobe MCDS  
dis(RD)  
Hold time, chip select MCCSH and MCCSL stable before  
falling edge of strobe MCDS  
t
TCS  
0
0
ns  
ns  
h(CS)  
(HO)  
Setup time, chip select MCCSH and MCCSL stable before  
rising edge of strobe MCDS  
t
TCS  
(SU)  
su(CS)  
NOTE 5: Timings are based upon Motorola 68HC11D3 (3 MHz) and Motorola 68HC11G5 (2.1 MHz).  
90%  
90%  
MCDS  
(see Note A)  
10%  
10%  
t
t
su(R/W)  
90%  
h(R/W)  
90%  
MCRW  
t
su(RA)  
t
h(RA)  
MCA0–MCA4  
t
v(RD)  
t
dis(RD)  
t
inv  
t
en(RD)  
MCD0–MCD7  
MCCSH  
90%  
90%  
10%  
t
t
su(CS)  
h(CS)  
MCCSL  
10%  
NOTE A: Chip selection is defined as both MCCS and MCDS active.  
Figure 3–8. Microcontroller Interface Timing Requirements  
(Motorola 8-Bit Read Cycle, MTS [1:0] = 01)  
3–8  
 
3.9 TCM4300 to Microcontroller Interface Timing Requirements (Motorola 8-Bit  
Write Cycle) (see Figure 3–9 and Note 5)  
ALTERNATE  
SYMBOL  
PARAMETER  
MIN  
0
MAX  
UNIT  
ns  
Setup time, read/write MCRW stable before rising edge of  
strobe MCDS  
t
t
t
t
t
TRW  
TRW  
TWA  
TWA  
TWD  
TWD  
su(R/W)  
h(R/W)  
su(WA)  
h(WA)  
(SU)  
(HO)  
(SU)  
(HO)  
(SU)  
Hold time, read/write MCRW stable after falling edge of  
strobe MCDS  
10  
0
ns  
Setup time, write address MCA stable before rising edge of  
strobe MCDS  
ns  
Hold time, write address MCA stable after falling edge of  
strobe MCDS  
10  
14  
ns  
Setup time, write data stable MCD before falling edge of  
strobe MCDS  
ns  
su(W)  
Hold time, write data stable MCD after falling edge of  
strobe MCDS  
t
t
t
0
60  
0
ns  
ns  
ns  
h(W)  
(HO)  
(STB)  
(HO)  
Pulse duration, write strobe pulse width high on MCDS  
TWR  
TCS  
w(WSTB)  
h(CS)  
Hold time, chip select MCCSH and MCCSL stable before  
rising edge of strobe MCDS  
Setup time, chip select MCCSH and MCCSL stable before  
falling edge of strobe MCDS  
t
TCS  
(SU)  
0
ns  
su(CS)  
NOTE 5: Timings are based upon Motorola 68HC11D3 (3 MHz) and Motorola 68HC11G5 (2.1 MHz).  
t
w(WSTB)  
MCDS  
(see Note A)  
90%  
90%  
10%  
10%  
t
t
su(R/W)  
h(R/W)  
MCRW  
10%  
10%  
t
t
h(WA)  
su(WA)  
MCA0–MCA4  
t
su(W)  
t
h(W)  
MCD0–MCD7  
MCCSH  
90%  
90%  
t
t
h(CS)  
su(CS)  
MCCSL  
10%  
10%  
NOTE A: Chip selection is defined as both MCCS and MCDS active.  
Figure 3–9. Microcontroller Interface Timing Requirements  
(Motorola 8-Bit Write Cycle, MTS [1:0] = 01)  
3–9  
 
3.10 Switching Characteristics, TCM4300 to DSP Interface (Read Cycle) (see  
Figure 3–10)  
ALTERNATE  
SYMBOL  
PARAMETER  
MIN  
0
MAX  
UNIT  
ns  
Setup time, read/write DSPRW stable before falling edge of  
strobe DSPSTRBL  
t
t
t
t
t
t
t
t
t
t
TRW  
su(R/W)  
h(R/W)  
su(CS)  
h(CS)  
su(RA)  
h(RA)  
en(R)  
(SU)  
(HO)  
(SU)  
(HO)  
Hold time, read/write DSPRW stable after rising edge of  
strobe DSPSTRBL  
TRW  
0
ns  
Setup time, chip select stable DSPCSL before falling edge  
of strobe DSPSTRBL  
TCS  
TCS  
0
ns  
Hold time, chip select DSPCSL stable after rising edge of  
strobe DSPSTRBL  
0
ns  
Setup time, read address DSPA stable before strobe  
DSPSTRBL goes low  
TWA  
TWA  
TRD  
TRD  
0
ns  
(SU)  
(HO)  
(EN)  
(DV)  
(INV)  
(DIS)  
Hold time, read address DSPA stable after strobe  
DSPSTRBL goes high  
0
ns  
Enable time, read data on falling edge of strobe DSPSTRBL  
to TCM4300 driving data bus DSPD  
0
ns  
Delay read data valid time on falling edge of strobe  
DSPSTRBL to valid data DSPD  
50  
12  
ns  
d(DV)  
h(R)  
Hold time, read data DSPD invalid after rising edge of  
strobe DSPSTRBL  
TRD  
TRD  
5
ns  
Disable time, read data. TCM4300 releases data bus after  
rising edge of strobe DSPSTRBL  
ns  
dis(R)  
DSPCSL  
10%  
10%  
t
t
h(CS)  
su(CS)  
90%  
10%  
90%  
10%  
DSPSTRBL  
DSPRW  
t
h(R/W)  
t
su(R/W)  
90%  
90%  
t
su(RA)  
t
h(RA)  
DSPA  
DSPD  
t
h(R)  
t
en(R)  
t
dis(R)  
t
d(DV)  
Figure 3–10. TCM4300 to DSP Interface (Read Cycle)  
3–10  
 
3.11 Switching Characteristics, TCM4300 to DSP Interface (Write Cycle) (see  
Figure 3–11)  
ALTERNATE  
SYMBOL  
PARAMETER  
MIN  
0
MAX  
UNIT  
ns  
Setup time, read/write DSPRW stable before falling edge of  
strobe DSPSTRBL  
t
t
t
t
t
t
t
TRW  
su(R/W)  
h(R/W)  
su(CS)  
h(CS)  
(SU)  
(HO)  
(SU)  
(HO)  
Hold time, read/write DSPRW stable after rising edge of  
strobe DSPSTRBL  
TRW  
0
ns  
Setup time, chip select stable DSPCSL before falling edge  
of strobe DSPSTRBL  
TCS  
TCS  
0
ns  
Hold time, chip select DSPCSL stable after rising edge of  
strobe DSPSTRBL  
0
ns  
Setup time, write address DSPA stable before falling edge  
of strobe DSPSTRBL  
TWA  
TWA  
TWD  
TWD  
0
ns  
su(WA)  
h(WA)  
su(W)  
(SU)  
(HO)  
(SU)  
Hold time, write address DSPA stable after rising edge of  
strobe DSPSTRBL  
0
ns  
Setup time, write data stable DSPD before rising edge of  
strobe DSPSTRBL  
3
ns  
Hold time, write data stable DSPD after rising edge of  
strobe DSPSTRBL  
t
t
0
ns  
ns  
h(W)  
(HO)  
Pulse duration, write strobe pulse width low on DSPSTRBL  
TWR  
25  
w(WSTB)  
(STB)  
DSPCSL  
10%  
10%  
t
t
su(CS)  
h(CS)  
t
w(WSTB)  
90%  
90%  
10%  
DSPSTRBL  
10%  
t
su(R/W)  
t
h(R/W)  
DSPRW  
t
su(WA)  
t
h(WA)  
DSPA  
DSPD  
t
su(W)  
t
h(W)  
Figure 3–11. TCM4300 to DSP Interface (Write Cycle)  
3–11  
 
3–12  
 
4 Principles of Operation  
This section describes the operation of the TCM4300 in detail.  
NOTE:  
Timing diagrams and associated tables are contained in Section 3 of this data  
manual.  
4.1 Data Transfer  
The interface to both the system digital signal processor and microcontroller is in the form of 2s complement.  
4.2 Receive Section  
The mode of operation is determined by the state of the MODE, FMVOX, IQRXEN, and FMRXEN bits of  
the DStatCtrl register, as shown in Table 4–1.  
Table 4–1. TCM4300 Receive Channel Control Signals  
CONTROL SIGNAL  
MODE  
ANALOG MODE  
DIGITAL MODE  
0
1
0
1
1
0
1
0
FMVOX  
IQRXEN  
FMRXEN  
In the digital mode (MODE=1), the receive section accepts RXIP, RXIN, RXQP, and RXQN analog inputs.  
These inputs are passed to continuous-time antialiasing filters (AAF), baseband filtering, and A/D  
conversion blocks, and then to sample registers where 10-bit registers can be read. The sample rate is  
48.6 ksps.  
In the analog mode (MODE = 0), the FMVOX bit of the DStatCtrl register enables or disables the Q side of  
the receiver channel, and the FMRXEN bit controls the external functions. In the digital mode, IQRXEN  
enables both the I and Q receive channels and external functions as well.  
To save power, the receive I and Q channels are enabled separately. This operation occurs because in the  
analog mode, only the Q channel is used. When the FMVOX bit is set to 1, it controls the input multiplexer,  
connectstheFMinputtothereceiverRXQPsignal, andconnectstheRXQNsignaltoVHR. WhentheMODE  
control bit and the IQRXEN control bit are set to 1, both sides of the receive channel are enabled for use  
in the digital mode.  
The input signals RXIP, RXIN and RXQP, RXQN are differential pair signals (see Table 4–2). Differential  
signals are used to minimize the pickup of interference, ground, and supply noise, while maintaining a larger  
signal level. In single-ended applications, the unused RXIN and RXQN terminals must be connected to VHR  
or to an externally supplied bias voltage equal to the dc value of the input signal, and the input signal level  
must be adjusted in the RF circuitry to provide the proper signal level so that the digital output codes are  
properly calibrated (0.5 V peak-to-peak corresponds to full-scale digital output). In the analog mode, the  
RXQN input is internally referenced to VHR. Alternatively, the unused inputs can be connected to VHR and  
the used inputs can be capacitively coupled. Note that when the RX and FM inputs are capacitively coupled,  
it is recommended that the input terminals be connected to VHR using a bias resistor.  
4–1  
 
Table 4–2. RXIP, RXIN, RXQP, and RXQN Inputs (AV  
= 3 V, 4.5 V, 5 V)  
DD  
PARAMETER  
Input voltage range  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.3  
AV 0.3  
DD  
V
Differential  
0.5  
0.5  
Input voltage for full- scale  
digital output  
Vp-p  
Single ended  
Differential  
0.125  
0.125  
Vp-p  
Nominal operating level  
Input CMRR (RXI, RXQ)  
Single ended  
45  
dB  
Sampling frequency, SINT (digital mode)  
Sampling frequency, SINT (analog mode)  
Receive error vector magnitude (EVM)  
I/Q sample timing skew  
48.6  
40  
5%  
50  
10  
58  
1
kHz  
kHz  
6%  
Input signal 0 – 15 kHz  
ns  
Bits  
dB  
A/D resolution  
Signal to noise-plus distortion  
Integral nonlinearity  
Input at full scale – 1 dB  
0 dB to 60 dB input  
54  
LSB  
Gain error (I or Q channel)  
±7%  
±0.3  
±30  
Gain mismatch between I and Q  
Differential dc offset voltage  
dB  
mV  
FM input sensitivity, for full scale (±14 kHz  
2.5  
Vp-p  
mV  
dB  
deviation)  
FM input dc offset (wrt VHR)  
±80  
50  
FM input idle channel noise, below full scale  
input  
FM gain error  
±6%  
Power supply rejection  
f = 0 kHz to 15 kHz  
40  
dB  
Provides 12 dB headroom for AGC fading conditions.  
It is recommended that the single-ended output of an external FM discriminator be capacitively coupled to  
the FM terminal for analog mode voice and WBD reception. An external bias resistor is needed to bias the  
FMterminaltoVHR. ThesignalatthisterminalisconveyedtotheQsideofthereceiverusingthemultiplexer,  
and the other Q input is connected internally to the VHR reference voltage. The I input of the receive section  
circuitry is disabled in the analog mode. The FM signal passes through the antialiasing filter, as specified  
in Table 4–3, before passing through the A/D converter. The signal at the FM terminal is also routed directly  
to the WBD demodulator through a low-pass filter (LPF) with the 3 dB point at 270 kHz.  
4–2  
 
Table 4–3. Receive (RX) Channel Frequency Response (FM Input in Analog Mode)  
PARAMETER  
TEST CONDITIONS  
0 kHz to 6 kHz (see Note 1)  
MIN  
TYP  
MAX  
UNIT  
±0.5  
Frequency response  
2.5 V peak-to-peak  
20 kHz to 30 kHz (see Note 2)  
34 kHz to 46 kHz (see Note 3)  
18  
48  
dB  
Peak-to-peak group  
delay distortion  
2.5 V peak-to-peak, 0 kHz to 6 kHz  
2
µs  
Absolute channel delay 2.5 V peak-to-peak, 0 kHz to 6 kHz  
400  
µs  
NOTES: 1. Ripple magnitude  
2. Stopband  
3. Stopband and multiples of stopband  
The VHR can provide a bias voltage for the received inputs when capacitively coupled from the RF section.  
To meet noise requirements, the VHR output should have an external decoupling capacitor connected to  
ground. The VHR output buffer is enabled by the OR of TXEN, FMVOX, and IQRXEN. The VHR output is  
high impedance otherwise.  
In the digital mode, both the I and Q receive sides are enabled. Table 4–4 lists the receive channel frequency  
response.  
Table 4–4. Receive (RX) Channel Frequency Response (RXI, RXQ Input in Digital Mode)  
PARAMETER  
TEST CONDITIONS  
0 kHz to 8 kHz (see Note 4)  
MIN  
TYP  
MAX  
UNIT  
±0.5 ±0.75  
8 kHz to 15 kHz (see Note 4)  
16.2 kHz to 18 kHz (see Note 2)  
18 kHz to 45 kHz (see Note 2)  
45 kHz to 75 kHz (see Note 2)  
> 75 kHz  
±1  
26  
30  
46  
60  
Frequency  
response  
0.125 V peak-to-peak  
dB  
Peak-to-peak  
group delay  
distortion  
0.125 V peak-to-peak, 0 kHz to 15 kHz  
2
µs  
Absolute channel  
delay, RXI, Q IN to 0.125 V peak-to-peak, 0 kHz to 15 kHz  
digital OUT  
325  
µs  
NOTES: 2. Stopband  
4. Deviation from ideal 0.35 square-root raised-cosine (SQRC) response.  
When the I and Q sample conversion is complete and the data is placed in the RXI and RXQ sample  
registers, the SINT interrupt line is asserted to indicate the presence of that data. This occurs at 48.6-kHz  
rate in the digital mode and at 40-kHz rate in the analog mode. In the analog mode, only the RXQ conversion  
path is used, and the RXI path is powered down.  
4.3 Transmit Section  
The transmit section operates in two distinct modes, digital or analog. The mode of operation is determined  
by the MODE bit of the DStatCtrl register. In the digital mode, data is input to the transmit section by writing  
to the TXI register. The resulting output is a π/4 DQPSK-modulated time division multiplexed (TDM) burst.  
In the analog mode, the data is in the form of direct I and Q samples which are written to both the TXI and  
TXQ registers, then D/A converted, filtered, and output through TXIP, TXIN, TXQP, and TXQN. The I and  
Q outputs are zero-IF FM signals; that is, no baseband connection is necessary for FM transmission.  
In the digital mode (MODE = 1), the data is written to the TXI register using the SINT interrupt to synchronize  
the data transfer. The TCM4300 performs parallel-to-serial conversion of the bits in the TXI register and  
encodes the resulting bit stream as π/4 DQPSK data samples. These samples are then filtered by a digital  
4–3  
 
square-root raised-cosine (SQRC) shaping filter with a roll-off rate of α = 0.35 and converted to sampled  
analog form by two 9-bit digital-to-analog converters (DACs). The output of the DAC is then filtered by a  
continuous-time resistance-capacitance (RC) filter.  
The TCM4300 generates a power amplifier (PA) control signal, PAEN, to enable the power supply for the  
PA. The start and stop times of the TDM burst are controlled by writing to a single bit, TXGO, in the DSP  
DStatCtrl register.  
In the analog mode (MODE = 0), the DSP writes 8-bit I and Q samples into the TXI and TXQ data registers  
at a 40-ksps rate. These writes are timed by the SINT interrupt signal. The samples are fed to a low-pass  
filter before D/A conversion. In the transmit analog mode, PAEN is always set to 1.  
The transmit section provides differential I and Q outputs (see Table 4-5) for both analog and digital modes.  
ThedifferentialdcoffsetfortheTXIandTXQoutputscanbeindependentlyadjustedusingthetransmitoffset  
registers.  
Table 4–5. Transmit (TX) I and Q Channel Outputs  
PARAMETER  
MIN  
TYP  
2.24  
1.12  
1.5  
MAX  
UNIT  
Differential  
Peak output voltage full scale, centered at VCM  
Vp  
Single ended  
Differential  
Nominal output-level (constellation radius) centered at  
VCM  
V
Single ended  
0.75  
±200  
3%  
Low-level drift  
PPM/°C  
Transmit error vector magnitude (EVM)  
Resolution  
4%  
8
bits  
dB  
S/(N+D) ratio at differential outputs  
Gain error (I or Q channel)  
48  
52  
±8%  
±12%  
Gain mismatch between I and Q  
Gain sampling mismatch between I and Q  
Zero code error differential  
±0.3  
dB  
ns  
20  
±80  
mV  
mV  
Zero code error, each output, with respect to VCM  
±80  
Zero code error, I to Q, with respect to other channel (differential or  
single ended)  
±10  
mV  
Load impedance, between P and N terminals  
Transmit offset DACs I and Q resolution  
10  
kΩ  
bits  
mV  
mV  
mV  
LSB  
LSB  
6
3.4  
Transmit offset DACs I and Q average step size  
Transmit offset DACs I and Q full-scale positive output  
Transmit offset DACs I and Q full-scale negative output  
Transmit offset DACs differential nonlinearity  
Transmit offset DACs integral nonlinearity  
2.9  
3.9  
105.4  
108.8  
±1.1  
±1.1  
Modulation Error: In the digital mode, during the transmit burst, the complex output of the transmitter circuits  
consists of an ideal output s = I + jQ + error e = e + je . In Table 4-5, the modulation error vector  
ideal  
ideal  
i
q
magnitude (EVM) is defined as the peak value of the magnitude of e relative to the ideal output:  
|e|  
|s|  
Modulation error percentage  
100  
%
Table 4–6 and Table 4–7 show the frequency response of the transmit section for digital and analog mode,  
respectively.  
4–4  
 
Table 4–6. Transmit (TX) Channel Frequency Response (Digital Mode)  
PARAMETER  
TEST CONDITIONS  
0 kHz to 8 kHz (see Note 4)  
MIN  
TYP  
MAX  
±0.3  
±0.5  
UNIT  
8 kHz to 15 kHz (see Note 4)  
20 kHz to 45 kHz (see Note 2)  
29  
55  
60  
60  
Frequency response  
dB  
45 kHz to 75 kHz (see Note 2)  
> 75 kHz (see Note 2)  
Any 30 kHz band centered at > 90 kHz (see Note 2)  
Peak-to-peak group  
delay distortion  
0 kHz to 15 kHz  
0 kHz to 15 kHz  
3
µs  
Absolute channel delay  
NOTES: 2. Stopband  
320  
µs  
4. Deviation from ideal 0.35 SQRC response  
Table 4–7. Transmit (TX) Channel Frequency Response (Analog Mode)  
PARAMETER  
TEST CONDITIONS  
0 kHz to 8 kHz (see Note 1)  
MIN  
TYP  
MAX  
±0.5  
±0.5  
UNIT  
8 kHz to 15 kHz (see Note 1)  
20 kHz to 45 kHz (see Note 2)  
31  
Frequency response  
dB  
45 kHz to 75 kHz (see Note 2)  
70  
70  
70  
> 75 kHz (see Note 2)  
Any 30 kHz band centered at > 90 kHz (see Note 2)  
Peak-to-peak group  
delay distortion  
0 kHz to 15 kHz  
3
µs  
Absolute channel delay  
0 kHz to 15 kHz  
540  
µs  
NOTES: 1. Ripple magnitude  
2. Stopband  
4.4 Transmit Burst Operation (Digital Mode)  
Inthedigitalmode, theTCM4300performsallencoding, signalprocessing, andpowerrampingfortheburst.  
Start and stop timing of the variable length bursts are set by means of the TXGO bit in the DStatCtrl  
register. The SINT interrupt output interrupts the DSP at 48.6 kHz which is T/2 interval (T = 1 symbol  
period = 1/24.3 kHz). The burst is initiated by the DSP writing 1 to 5 dibits to the TXI register, a small  
positive-delay offset value d to the base station (BST) register, and a 1 to the TXGO bit in the DStatCtrl  
register.  
The TXGO bit is sampled on the falling edge of SINT. The transmit outputs are held at zero differential  
voltage (each output terminal is held at the voltage supplied to the VCM input terminal) for 9.5 SINT periods  
(195.5µs)plusBSToffsetdelayafterSINThasdetectedTXGOhigh;thenthetransmitoutputsbegintoramp  
to the initialπ/4 DQPSK constellation value. The shape of the ramp is the transient resulting from the internal  
SQRC filtering. At the same time that the transmit outputs are beginning to ramp, the PAEN digital output  
goes high. This output can enable the power amplifier of a cellular radio transmitter. The TCM4300 transmit  
outputs reach the first π/4 DQPSK constellation value (maximum effect point, MEP) 6 SINT periods (3  
symbol periods) after the start of the ramp.  
The bit stream to be encoded as π/4 DQPSK symbols is generated by right shifts on each SINT of the TXI  
register with bit 0 (LSB) used first.  
PreviouslywrittendatacontinuestopropagatethroughtheTCM4300internalfiltersuntilthelastπ/4DQPSK  
constellation value (last MEP) occurs at the transmit outputs 15.5 SINT periods (318.9 µs) plus BST offset  
4–5  
 
delay after the last symbol occurs (2 SINT periods before TXGO goes low); then the transmit outputs decay  
to zero differential voltage (each output at the voltage supplied to the VCM input terminal). The shape of the  
decay is the transient resulting from the internal SQRC filtering. The transmit outputs are held at zero  
differentialvoltage6SINTperiods(3symbolperiods)afterthestartofthedecay. AtthistimethePAENdigital  
output is set low (see Figure 4–1 and Figure 4–2).  
Nonzero values of the BST offset register increase the delays of both the transmit waveforms and PAEN  
relative to the edges of TXGO after it is internally sampled by SINT. The delays are increased in increments  
of 1/4 SINT (1/8 symbol period).  
For delays of 1 SINT or greater, the fractional part of the delay can be achieved using the BST offset register  
with the remaining integer SINT delay implemented externally by delaying the writing to TXGO and TXI.  
The relative timing of PAEN and the transmit waveforms is not affected by the BST offset register.  
The IS-54 standard describes shortened bursts and normal bursts. The two types differ in duration and  
number of transmitted bursts, burst length being determined by the TXGO bit.  
N+3 SINT Periods  
(N = Total number of bits sent)  
19.5 SINT Periods +d(T/8)  
6 SINT Periods  
9.5 SINT Periods  
15.5 SINT Periods +d(T/8)  
d(T/8)  
SINT  
TXGO  
TXI data bit  
PAEN  
TXI/Q output ramp  
Input Bits  
>>>  
>>>  
>>>  
>>>  
Dibit transmission  
First MEP  
Last MEP  
Total delay = d (SINT/4 or T/8) where d = integer value (0,1,2,3) written to the BST offset register.  
Figure 4–1. Power Ramp-Up/Ramp-Down TIming Diagram  
4–6  
 
Dibit  
In  
BST Offset  
Delay  
Channel Delay  
(15.5 SINT Periods)  
TXI,  
TXQ  
D
Q
Transmit Channel Delay + d(T/8)  
Occurs from last symbol (2 SINT periods)  
before TXGO goes low  
CLK  
TXGO  
Delay = 0, 1/4, 1/2, 3/4  
BST Offset  
Delay  
PAEN Delay  
D
Q
SINT  
PAEN  
9.5  
SYNOL  
MPAEN  
19.5  
CLK  
PAEN Delay + d(T/8)  
TXGO high: 9.5 SINT periods + d(T/8): PAEN high  
TXGO low: 19.5 SINT periods + d(T/8): PAEN low  
Figure 4–2. Transmit Power Ramp-Up/Ramp-Down Functional Diagram  
4.5 Transmit I And Q Output Level  
In the digital mode, the output level at TXI and TXQ is controlled by the TCM4300. During the burst, but not  
2
2 1/2  
including ramp-up or ramp-down periods, the average output level (I + Q )  
should approximate the  
specified value. There is no variable level control for TXI and TXQ within the TCM4300 other than the fixed  
ramping. In the analog mode, the output of the TCM4300 depends only on the sample values written to the  
TXI and TXQ registers.  
There are small differences in the average output power levels between the digital and the analog modes.  
These differences require compensation at the system level by a small attenuation in the sample values of  
the analog output.  
When a change in transmit power is necessary, the microcontroller can change the value sent to the  
PWRCONT DAC, the output of which can be connected to a voltage-controlled attenuator in the transmit  
path of the RF section.  
4.6 Wide-Band Data Demodulator  
The wide-band data demodulator (WBDD) module demodulates the FM signal and outputs a  
Manchester-decoded data stream. The WBDD is used for receiving the analog control channels of the  
forward control channel (FOCC) and the forward voice channel (FVC). The bit error rate (BER) performance  
requirements are listed in Table 4–8.  
4–7  
 
Table 4–8. Typical Bit-Error-Rate Performance (WBD_BW = 000)  
TEST CONDITIONS  
PARAMETER  
MIN  
MAX  
UNIT  
MEAN CNR  
–5  
0
0.4  
0.279  
0.143  
5
Bit error rate  
10  
15  
20  
25  
0.056  
dB  
0.0192  
0.00623  
0.00199  
The WBDD is controlled by the bits in the control register WBDCtrl (see Table 4–9).  
Table 4–9. Bits in Control Register WBDCtrl  
NAME  
WBD_LCKD  
WBD_ON  
WBD_BW  
BIT CODE  
FUNCTION  
Indicates whether edge detector is locked (1) or unlocked (0)  
Turns the WBDD module on/off (1/0)  
Sets the appropriate PLL bandwidth  
000  
001  
010  
011  
100  
101  
110  
20 Hz  
39 Hz  
78 Hz  
156 Hz  
313 Hz  
625 Hz  
1250 Hz  
WBD_LCKD: This bit reduces the effects of signal dropouts due to fading. In the Manchester-coded signal,  
there are two types of data edges. One type occurs at the midpoint of each data bit, and the other occurs  
randomly, depending on the transmitted data sequence. Inside the WBDD, an edge detector rapidly  
synchronizes itself to the midpoint edges when the WBD_LCKD bit clears to 0. However, when a signal  
dropout occurs, the edge detector may momentarily lock to the wrong edge because it cannot distinguish  
the midpoint edges from the data edges. A small number of additional bits may be lost in this instance.  
WhentheWBD_LCKDbitissetto1, theedgedetectorusestheWBDDinternalphaselockloop(PLL)output  
to distinguish the correct edge. Once acquisition of data has occurred, when this bit is set to 1, the loss of  
bits due to signal dropouts is restricted to the fade duration only.  
When the WBDD PLL is not synchronized, as at power up, the WBD_LCKD bit must be cleared to 0 to allow  
edge synchronization to the data.  
WBD_BW: The variable bandwidth is required for fast acquisition in the beginning using a wide bandwidth  
for the PLL, and a narrower bandwidth is used afterwards to reduce the likelihood of noise causing loss of  
synchronization.  
The WBDCtrl register is accessible by both the DSP and the microcontroller.  
4.7 Wide-band Data Interrupts  
The WBDD operates whenever WBD_ON is high, and it does not require the receive channels to be  
enabled. While WBD_ON is high, every 800 µs, 8 bits are placed in the WBD register, which is accessible  
by both the DSP and the microcontroller ports. This value should be written at the same time as WBD_ON  
is initially set high.  
4–8  
 
At the same time, the interrupts DWBDINT and MWBDFINT are asserted. The interrupt rate is 800 µs  
(8 bits/10 kHz). These interrupts are individually cleared when the WBD register is read by the  
corresponding processor. They can also be cleared by their respective processor by writing a 1 to the  
corresponding clear WBD bit.  
There is one WBD control register. It can be written to by either processor port.  
4.8 Wide-band Data Demodulator General Information  
TheWBDDrecoversthetransmitterclockfromthedatastream, whichisManchesterencoded, anddecodes  
the data bits. Consideration at the system level is required to ensure data integrity.  
The WBD stream carries with it a 10-kHz clock. The Manchester-coded data format contains a transition  
at the middle of every bit-clock period, which aids in clock recovery. The polarity of the transition is  
data-dependent. In a typical Manchester-coded WBD stream, a positive voltage for the first half of the data  
sequencebittimefollowedbyanegativevoltageforthesecondhalfofthedatasequencebittimerepresents  
the value 0 in the data sequence. Likewise, a negative voltage followed by a transition to a positive voltage  
represents the value 1 in the data sequence. This is illustrated in Figure 4–3. The WBD stream can also be  
seen as the exclusive-OR of the clock and data sequence. The data sequence is in nonreturn to zero (NRZ)  
format.  
Data  
Sequence  
0
1
1
0
0
1
0
WBD  
Stream  
Recovered Clock  
10 kHz  
Figure 4–3. WBD Manchester-Coded Data Stream  
4–9  
 
4.9 Auxiliary DACs, LCD Contrast Converter  
Auxiliary DACs generate AFC, AGC and power control signals for the RF system. These three D/A  
converters are updated when the corresponding data is received from the DSP. In fewer than 5 µs after the  
corresponding registers are written to, the output has settled to within 1 LSB of its new value (see  
Table 4–10).  
Table 4–10. Auxiliary D/A Converters  
PARAMETER  
TEST CONDITIONS  
MIN  
0.2  
0.2  
0.2  
TYP  
MAX  
2.5  
4
UNIT  
AV  
AV  
AV  
> 3 V ,  
AUXFS [1:0] = 00  
DD  
DD  
DD  
Output range  
> 4.5 V , AUXFS [1:0] = 10  
V
> 5 V ,  
AUXFS [1:0] = 11  
4.5  
Resolution AGC, AFC, PWRCONT  
DACs  
8
4
bits  
bits  
Resolution LCDCONTR DAC  
Gain + offset error (full scale) AGC,  
AFC, PWRCONT DAC  
±3%  
Gain + offset error (full scale)  
LCDCONTR DAC  
±7%  
Differential nonlinearity  
Integral nonlinearity  
±0.75  
±1  
LSB  
LSB  
±0.75  
±1  
Range settings depends only on AUXFS [1:0]. The supply voltage is not detected.  
The LCDCONTR output is used by the microcontroller to adjust the contrast of the liquid-crystal display  
(LCD). This converter is a separate 4-bit DAC.  
The auxiliary DACs can be powered down. The AGC and AFC DACs have dedicated bits in the MIntCtrl  
register to enable the DACs. The PWRCONT DAC is enabled by the TXEN bit in the DStatCtrl register. The  
LCDCONTR DACisenabledwhentheLCDENbitoftheLCDD/Aregisterclearsto0, thefourdatabitsbeing  
left justified. The AFC, AGC, and PWRCONT DACs are disabled after powerup or after a reset of the  
TCM4300. After power up or reset, the default AUXFS[1:0] is 00. When the DACs are powered down, their  
output terminals go to a high-impedance state and can tolerate any voltage present on the terminal that falls  
within the supply range.  
The slope and the corresponding output values for the auxiliary DACs are listed in Table 4–11 and  
Table 4–12.  
Table 4–11. Auxiliary D/A Converters Slope (AGC, AFC, PWRCONT)  
NOMINAL OUTPUT VOLTAGE  
FOR DIGITAL CODE = 128  
(MIDRANGE)  
NOMINAL OUTPUT VOLTAGE  
FOR DIGITAL CODE = 256  
NOMINAL LSB  
VALUE  
AUXFS[1:0]  
SETTING  
SLOPE  
(MAX VALUE)  
(V)  
(V)  
(V)  
00  
01  
10  
11  
2.5/256  
Do not use  
4/256  
0.0098  
Do not use  
0.0156  
1.25  
Do not use  
2
2.5  
Do not use  
4
4.5/256  
0.0176  
2.25  
4.5  
The maximum input code is 255. The value shown for 256 is extrapolated.  
4–10  
 
4.9 Auxiliary DACs, LCD Contrast Converter (continued)  
Table 4–12. Auxiliary D/A Converters Slope (LCDCONTR)  
NOMINAL OUTPUT VOLT-  
AGE FOR DIGITAL CODE = 8  
(MIDRANGE)  
NOMINAL OUTPUT VOLTAGE  
FOR DIGITAL CODE = 16†  
NOMINAL LSB  
VALUE  
AUXFS[1:0]  
SETTING  
SLOPE  
(MAX VALUE)  
(V)  
(V)  
(V)  
00  
01  
10  
11  
2.5/16  
Do not use  
4/16  
0.1563  
Do not use  
0.2500  
1.25  
Do not use  
2
2.5  
Do not use  
4
4.5/16  
0.2813  
2.25  
4.5  
The maximum input code is 15. The value shown for 16 is extrapolated.  
4.10 RSSI, Battery Monitor  
The received signal strength indicator (RSSI) and battery (BAT) strength monitor share a common register.  
The input source is determined by writing any value to the mapped register location for that analog-to-digital  
converter (ADC) (see Table 4–13), and the result of the conversion is stored in both register locations. The  
conversion process is initiated when the register is written to. The CVRDY bit in the MStatCtrl register is set  
to 1 to show completion of the conversion process. Reading from either of the register locations causes the  
CVRDY bit to change to 0. The RSSI allows the mobile unit to choose the proper control channels and to  
report signal levels to the base stations.  
When the CVRDY bit in the MStatCtrl register goes to 1, this indicates that the latest RSSI or battery voltage  
A/D conversion has been completed and can be read from the RSSI or BAT register location. CVRDY clears  
to 0 when the microcontroller reads either of these locations.  
Table 4–13. RSSI/Battery A/D Converter  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
Input range  
AV  
= 3 V, 4.5 V, 5 V  
= 3 V, 4.5 V, 5 V  
0.2  
2
DD  
Resolution  
8
20  
bits  
µs  
Conversion time  
AV  
DD  
Gain + offset error (full scale)  
Differential nonlinearity  
Integral nonlinearity  
±3%  
±0.75  
±0.75  
2
±4%  
±1  
LSB  
LSB  
MΩ  
±1  
Input resistance  
1
In order to save power, the entire RSSI/battery converter circuit is powered down when no A/D conversions  
are requested for 40 µs. The microcontroller writes to RSSI or BAT registers, causing power to be applied  
to the converter circuit. Power is applied to the converter circuit until the data value has been latched into  
the corresponding register, at which time power to the converter is removed. Data remains in the result  
registers after the converter is powered down.  
4.11 Timing And Clock Generation  
The digital timing generation system uses a 38.88-MHz master clock as shown in Figure 4–4. The upper  
waveform shows the clock generation for clocks that must be phase adjusted in order to synchronize the  
mobile unit with the received symbol stream in the digital mode. In the analog mode, these clocks operate  
without phase adjustments. The bottom waveform of Figure 4–4 shows the clocks that are directly derived  
from the master clock.  
4–11  
 
Codec Master Clock 2.048 MHz  
CMCLK  
Codec Sample Clock 8 kHz  
CSCLK  
Figure 4–4. Codec Master and Sample Clock Timing  
4.11.1 Clock Generation  
There are three options for generating the master clock. A fundamental crystal or a third-overtone crystal  
with a frequency of 38.88 MHz can be connected between the MCLKIN and the XTAL terminals or an  
external clock source can be connected directly to the MCLKIN terminal. The MCLKOUT is a buffered  
masterclockoutputatthesamefrequencyasMCLKIN. MCLKOUTcanbeusedasthesourceclockforother  
devices in the system. Setting the MCLKEN bit in the MStatCtrl register enables or disables this output. The  
MCLKOUT enable is synchronous with MCLKIN to eliminate abnormal cycles of the clock output.  
All output clocks are derived from the master clock (MCLKIN). The sample clocks for the digital and analog  
modes, the 8-kHz speech codec sample clock, and the clocks for the A/D and D/A functions are also derived  
from the master clock.  
4.11.2 Speech-Codec Clock Generation  
The TCM4300 generates two clock outputs for use with speech codecs: the 2.048-MHz CMCLK and the  
8-kHz CSCLK. These clocks are generated so that each CSCLK period contains exactly 256 cycles of  
CMCLK. Since 2.048 MHz is not an integer division of the 38.88-MHz MCLKIN, one out of every 64 CMCLK  
cycles is 18 MCLKIN periods long, and the remaining 63 out of 64 are 19 MCLKIN periods long. The average  
frequency of MCLKIN is therefore  
63  
19  
1
18  
MCLKIN  
2.048092 MHz  
64  
CSCLK is exactly CMCLK divided by 256 (see Figure 4–4).  
To save power, the codec clocks are only generated by TCM4300 when the SCEN bit of the DStatCtrl  
register is set high. When SCEN is low, both outputs, CSCLK and CMCLK, are held low. SCEN is also  
available as an output.  
4.11.3 Microcontroller Clock  
Avariablemodulusdividerprovidesaselectionoffrequenciesforuseasamicrocontrollerclock. Themaster  
clock is divided by an integer from 32 to 2, giving a wide range of frequencies available to the microcontroller  
(1.215 MHz to 19.88 MHz). The modulus can be changed by writing to the microcontroller clock register.  
The output duty cycle is within the requirements of most microcontrollers, that is, from 40% to 60%. At  
power-on reset, the clock divider defaults to 1.215 MHz.  
4.11.4 Sample Interrupt SINT  
The SINT interrupt signal is the primary timing signal for the TCM4300 interface. The primary function of  
the SINT is to indicate the ready condition to receive or transmit data. It also conveys timing marks to allow  
for the synchronization of system DSP functions. In the digital mode, SINT is used in conjunction with the  
received sync word to track cellular system timing. The SINT can be disabled by writing a 1 to the SDIS bit  
of the DIntCtrl register. When enabled, the SINT operates continuously at 48.6 kHz in the digital mode and  
at40kHzintheanalogmode. TheSINTsignaldoesnotrequireaninterruptacknowledge. TheSINTisactive  
low for 5.5 MCLK cycles (141.5 ns) in the analog mode and 6.5 MCLK cycles (167.2 ns) in the digital mode.  
4–12  
 
4.11.5 Phase-Adjustment Strategy  
For an IS-54 system in the digital mode, receiver sample timing must be phase adjusted to synchronize the  
A/D conversions to optimum sampling points of the received symbols, and to synchronize the mobile unit  
timing to the base station timing. This is done by temporarily increasing or decreasing the periods of the  
clocks to be adjusted. To avoid undesirable transients, each cycle of the clock being adjusted is altered by  
only one period of MCLKIN. A total adjustment equivalent to multiple MCLKIN periods is accomplished by  
altering multiple cycles of the clock being adjusted. The number of cycles altered is controlled by internal  
counters.  
In the TCM4300 there are two clocks which must be adjusted: CMCLK and an internal 9.72-MHz clock from  
which SINT is derived. Each of these clocks has an associated counter that counts the number of cycles  
that have been lengthened or shortened by one MCLKIN period each and thus detects when the total  
adjustmentis complete. These counters are shown in Figure 4–5 as Adjust Counter A and Adjust Counter B.  
The magnitude of the 2s complement value written to the timing adjustment register determines the number  
ofcyclesoftheclockstobelengthenedorshortenedbyoneMCLKINperiodeachtoachievethetotaldesired  
timing adjustment in units of MCLKIN periods. If a negative number is written, the clock periods are  
lengthened for the duration of the timing adjustment, resulting in a timing delay. If a positive number is  
written, the clock periods are shortened for the duration of the timing adjustment, resulting in a timing  
advance.  
The divider generates CMCLK normally divides MCLKIN by either 19 or 18. When the CMCLK period is  
beinglengthenedduringatimingadjustment, MCLKINisdividedbyeither20or19. WhentheCMCLKperiod  
is being shortened, MCLKIN is divided by either 18 or 17 (see subsection 4.11.2). The divider used to  
generate a 9.72-MHz clock divides by 4 during normal operation, by 5 when its period is being lengthened  
during timing adjustments, and by 3 when its period is being shortened during timing adjustments.  
Because CMCLK and the 9.72-MHz internal clock have different periods, and the timing adjustments are  
limited to one period of MCLKIN per period of the clock, these clocks take different times to complete the  
entire timing adjustment. Because the total adjustment is the same number of MCLKIN periods for both  
clocks, the relative phases of the two clocks are the same after the adjustment as they were before.  
Both adjust counters reach zero when the adjustment is complete, so there is no need to write to the timing  
adjustment register until another timing adjustment is required. For each write to the timing adjustment  
register, a single timing adjustment of the direction and magnitude requested is performed.  
The output of each adjustment counter is fed to a variable modulus divider. For counter A, there are three  
possible moduli, 3, 4, and 5. For counter B there are four possible moduli, 17, 18, 19, and 20.  
4–13  
 
2.048-MHz Codec Master Clock CMCLK  
÷ 17, 18, 19, 20  
= 0  
÷ 256  
Bits 0–5  
RCO  
Adjust  
8-kHz Codec Sample Clock CSCLK  
Counter B  
10  
From DSP  
Phase-Adjusted  
9.72-MHz Clock  
Adjust  
Counter A  
Analog/Digital  
40.0/48.6-kHz A/D Sample Clock (SINT)  
38.88 MHz  
MCLKIN  
÷ 243/  
÷ 200  
÷ 3, 4, 5  
Analog/Digital  
Mode (MODE bit)  
Frequency Synth. Clock 303.75 kHz  
WBD Demod. 6.48 MHz  
ADC Clocks  
Clock  
Divider  
Chain  
5
From  
Micro-  
DAC Clocks  
controller  
Microcontroller Clock MCCLK  
÷ N  
N = (2, 3, . . . 32)  
Sync.  
Enable  
Logic  
External Clock Output MCLKOUT  
MCLKEN  
Figure 4–5. Timing and Clock Generation for 38.88-MHz Clock  
4–14  
 
4.12 Frequency Synthesizer Interface  
The synthesizer interface provides a means of programming three synthesizers. The synthesizer-side  
outputs are a data line, a clock line, and three latch enable lines that separately strobe data into each  
synthesizer. The control inputs are registers mapped into the microcontroller address space. The status of  
the interface can be monitored to determine when the programming operation has been completed.  
The synthesizer interface is designed to be general purpose. Most of the currently available synthesizers  
can be accommodated by programming the interface according to the required synthesizer data and logic  
level formats.  
The output of the synthesizer interface consists of five signals. SYNCLK is the common data clock for all  
attached synthesizer chips. The clock rate is MCLK/128 (304 kHz). The clock pulse has a 50% duty factor.  
The serial data output SYNDTA is common to all synthesizers. Three strobe signals, SYNLE0, SYNLE1,  
and SYNLE2, are provided. There is one for each synthesizer chip. The attributes of this interface are  
controlled by means of the synthesizer control registers, SynCtrl0, SynCtrl1, and SynCtrl2. These attributes  
determine:  
The polarity of the clock (rising or falling edge)  
Whether data is shifted left or right  
The number of bits sent to the synthesizer  
The timing and polarity of the latch enable bits  
The selection of which synthesizer to program  
Programming of the synthesizers is accomplished by writing to four microcontroller-mapped data registers.  
These registers are chained to form a 32-bit data shift register that can be operated in either shift left or shift  
right mode. This register set can accommodate various formats of synthesizer control data. When fewer  
than 32 bits of data are to be transmitted, the significant data bits must be justified such that the first bit to  
be transferred is either the LSB or the MSB of the register set, as defined by the control register for LSB or  
MSB first operation. All 32 bits of the data register are transmitted each time (see Section 4.15 for register  
location and Figure 4–6 for a representative block diagram of the frequency synthesizer interface).  
4–15  
 
CLKPOL  
NUMCLKS  
5
5
5
3
Control  
Registers  
LOWVAL  
HIGHVAL  
SEL[2:0]  
Ready  
and  
MSB/LSB FIRST  
Timing Logic  
SYNRDY To MStatCtrl Register  
SYNDTA  
SYNLE0  
M
U
X
8
32-Bit Data  
Register  
µC  
D
E
D
E
D
E
Bus  
32  
5
Q
Q
Q
SEL 0  
MSB/LSB  
FIRST  
DMUX  
SYNLE1  
SYNLE2  
A
SEL 1  
SEL 2  
HIGHVAL  
A = B  
S
R
B
Q
A
LOWVAL  
5
A = B  
CLKPOL  
B
NUMCLKS  
A
Clock  
Circuit  
B A  
SYNCLK  
BIT CNT  
[0 . . . 31]  
B
303.75 KHz  
Figure 4–6. Synthesizer Interface Circuit Block Diagram  
4–16  
 
The SynData0 register contains the least significant bits of the 32-bit data register. SynData3 contains the  
most significant bits. The bits in the SynCtrl0, SynCtrl1, and SynCtrl2 registers are allocated as shown in  
Figure 4–7.  
7–5  
4–0  
SynCtrl0  
SynCtrl1  
SynCtrl2  
SEL[2:0]  
LOWVAL  
7–6  
5
4–0  
MSB/LSB  
FIRST  
Reserved  
HIGHVAL  
7–6  
5
4–0  
Reserved  
CLKPOL  
NUMCLKS  
Figure 4–7. Contents of SynData Registers  
Table 4–14 identifies the meaning of each of the bit fields in SynCtrl[2:0].  
Table 4–14. Synthesizer Control Fields  
NAME  
CLKPOL  
DESCRIPTION  
This is a 1-bit field. When CLKPOL = 1, the SYNCLK signal is a positive-going, 50% duty cycle  
pulse. CLKPOL = 0 reverses the polarity of SYNCLK.  
NUMCLKS  
HIGHVAL  
LOWVAL  
This 5-bit field defines the total number of clock pulses that are to be produced on SYNCLK. The  
value written into NUMCLKS is the desired number of output clock pulses, with one exception:  
When 32 clock pulses are desired, all zeroes are written into NUMCLKS.  
This 5-bit field defines when the strobe signal for the selected synthesizer is driven high. HIGHVAL  
is the bit number at which the signal changes state. Bits being transferred on SYNDTA are  
sequentially designated 0, 1, . . . 31, independent of any MSB/LSB selection.  
The value written into this 5-bit field affects the strobe signal for the selected synthesizer. LOWVAL  
is the bit number at which the strobe signal is driven low. The first bit transferred out of the serial  
interface is defined to occur at bit-time 0, independent of any MSB/LSB selection.  
MSB/LSB FIRST Writing a 0 to MSB/LSB FIRST causes the LSB (SynData0[0]) to be the first bit sent to SYNDTA  
of the serial synthesizer interface. Writing a 1 to this bit programs the block for MSB first operation,  
SynData3[7].  
SEL[2:0]  
This is a 3 bit field that selects which synthesizer strobe line is active. A 1 in any of the SELx bits  
activates the corresponding latch enable.  
In the status register MStatCtrl, two bits, SYNOL and SYNRDY, are dedicated to the synthesizers. The first  
is an out-of-lock indicator that comes from the SYNOL input terminal. When the SYNOL input terminal is  
connected to the OR of the out-of-lock signals from the external synthesizers, the lock condition of the  
synthesizers can be monitored by reading the MStatCtrl register. A high on SYNOL also prevents the PAEN  
output from being asserted and forces the TXI and TXQ outputs to zero. The SYNRDY bit, active high,  
indicates when the synthesizer interface is idle and ready for programming. When SYNRDY is low, the  
synthesizer interface is busy.  
Controlling the synthesizer interface is straightforward. The microcontroller checks to see if the SYNRDY  
bitislow. Whenitislow, thesynthesizerinterfaceisnotready. WhenSYNRDYgoeshigh, themicrocontroller  
programs the desired information into the four registers. When the microcontroller write to the SynCtrl2  
register is complete, the synthesizer interface sets the SYNRDY bit low and begins to send data, clock, and  
latch enable according to the format established in the registers. SYNRDY returns high when the entire  
operation is complete.  
4–17  
 
Up to 31 data bits plus a latch enable (SYNLE0,1,2) can be programmed in one programming cycle. When  
data greater than or equal to 32 bits must be programmed, TI recommends using two or more programming  
cycles with data in each cycle and a latch enable in the final programming cycle. Two or more programming  
cycles are recommended because all programming cycles must contain at least one SYNCLK pulse,  
whereas the latch enable can be suppressed in any programming cycle.  
Figure 4–8 shows an example of the synthesizer output signals. In this case, an 18-bit pattern, 0x10664,  
was chosen to write into synthesizer 1 with a positive-going latch enable pulse at the eighteenth bit. In order  
to do so, the microcontroller writes the values 00h into SynData0, 00h into SynData1, 99h into SynData2,  
41h into SynData3, 52h into SynCtrl0, 31h into SynCtrl1, and 32h into SynCtrl2.  
SYNCLK  
SYNDTA  
1
0
6
6
4
SYNLE1  
SYNLE0, 2  
SYNRDY  
Figure 4–8. Example Synthesizer Output  
4.13 Power Control Port  
For systems requiring minimum system current consumption, power can be provided to each functional part  
of the TCM4300 only when that function is required for proper system operation. To accomplish this, the  
TCM4300 provides six external power control signals accessible through the DStatCtrl and MStatCtrl  
registers. These signals can be used to minimize the on time of the functional units. These power control  
signals are SCEN, FMRXEN, IQRXEN, TXEN, PAEN, and OUT1 (see Table 4–15). The polarity of each of  
these signals is high enable, low disable.  
Table 4-15. External Power Control Signals  
RESET  
NAME  
SCEN  
SUGGESTED EXTERNAL APPLICATION  
VALUE  
Speech codec (microphone/speaker interface circuit) enable  
FM demodulator enable  
0
0
0
0
FMRXEN  
IQRXEN  
TXEN  
I and Q receive enable. IQRXEN enables the QPSK demodulator and the AGC amplifier  
Transmit enable. TXEN enables power to the transmitter signal processing circuits: QPSK  
modulator, voltage-controlled amplifier, driver amplifier, PA negative bias. This signal can  
be used to enable these subsystems only during the transmit burst in digital mode.  
OUT1  
PAEN  
User defined  
0
0
Power amplifier enable. PAEN enables power to PA.  
4–18  
 
In addition to allowing control of power to external functional modules, these power control bits combined  
with other control bits are used to control internal TCM4300 functions. This control system is shown in  
Figure 4–9.  
WBD_ON  
FMRXEN  
WBD  
Ctrl  
WBD Demodulator Circuit  
SC Clock Generation  
Q-Side Input MUX  
OUT1  
MIntCtrl  
SCEN  
SCEN  
FMRXEN  
FMRXEN  
FMVOX  
OUT1  
VHR High Drive Enable  
(Hi-Z when disabled)  
Q-Side RX Enable  
I-Side RX Enable  
DStatCtrl  
IQRXEN  
IQRXEN  
TXEN  
TXEN  
MODE  
TXGO  
TX and RX Filter Select  
TX Signal Processing  
PWRCONT, Enable (Hi-z when disabled)  
SYNOL  
PAEN  
Transmitter  
Control  
MStatCtrl  
Circuits  
TXONIND  
MPAEN  
Figure 4–9. Internal and External Power Control Logic  
To allow for further system power savings, the TCM4300 receive I and Q channels are enabled separately  
because only the Q side is used in analog mode. The FMVOX bit controls the Q-side input multiplexer. When  
FMVOX is high, the QP side of the receiver is connected to the FM input terminal, the QN input is connected  
to the VHR reference voltage, and the Q side of the receiver is powered up. The MODE bit controls the  
Q-side filter characteristics for digital or analog mode. The IQRXEN bit enables both the I and Q receiver  
sides. The bit IQRXEN can be set high while still in analog mode (FMVOX high or MODE low) to allow  
sufficient power-up settling time for the external receiver I and Q circuits.  
Setting the MODE bit low connects RXQP to the FM input and RXQN to VHR.  
In the digital mode (MODE bit set high), setting IQRXEN high turns on both sides of the receiver. The TXEN  
enables the internal transmit functions. When the TXEN bit is set low, the PWRCONT output goes to a  
high-impedance state and the PAEN output is set low. The TXEN signal can be used to power down most  
of the external transmit circuits between transmit bursts.  
4–19  
 
In the analog mode, (MODE bit set low), PAEN is high whenever TXEN is active and SYNOL is low. The  
SYNOL input can be used as an indication to the TCM4300 that the external synthesizers are out of lock.  
The PAEN signal is gated by SYNOL to prevent off-channel transmissions.  
The TXEN, IQRXEN, FMVOX, and MODE signals are generated by sampling the corresponding bits of the  
DStatCtrl register with the internal SINT. The effect of a write to the DStatCtrl register on these signals does  
not appear until the next SINT after the write.  
4.14 Microcontroller-DSP Communications  
The microcontroller and the DSP communicate by means of two separate 32-byte first-in first-out (FIFO)  
buffers. Figure 4–10 illustrates this scheme. The microcontroller writes to FIFO A, but data read from the  
same address comes from FIFO B. On the DSP side, the situation is reversed.  
Send CINT,  
CINT Status,  
Clear DINT  
CINT  
FIFO A  
8
µC  
DSP  
8
DINT  
FIFO B  
Send DINT,  
DINT Status,  
Clear CINT  
Figure 4–10. Microcontroller-DSP Data Buffers  
To send data to the DSP, the microcontroller writes data to FIFO A. To indicate to the DSP that FIFO A is  
ready to be read, the microcontroller writes a 1 to the Send-C bit of the microcontroller interrupt control  
registerMIntCtrl. Whenthishappens, theDSPinterruptlineCINTgoesactive, signalingtotheDSPthatdata  
is waiting. At the same time, the value that can be read from the Clear-C bit in the DIntCtrl register goes from  
0 to 1, indicating that the interrupt is pending. When the DSP writes a 1 to the Clear-C bit, the CINT line  
returns to the inactive state and the value that can be read from Clear-C is 0. The microcontroller cannot  
deassert the CINT line.  
The microcontroller-DSP communications interface is symmetric. Data sent from the DSP to the  
microcontroller is handled as described above, with the roles of A and B FIFOs and C and D bits and  
interrupts reversed. When the number of reads exceeds the number of writes from the other side, the values  
read are undefined.  
4–20  
 
4.15 Microcontroller Register Map  
The microcontroller can access 17 locations within the TCM4300. The register locations are 8 bits wide as  
shown in Table 4–16 and Table 4–17.  
Table 4–16. Microcontroller Register Map  
ADDR  
00h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
NAME  
WBDCtrl  
WBD  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
WBD_LCKD WBD_ON  
MSB  
WBD_BW  
Reserved  
LSB  
LSB  
FIFO  
MSB  
Clear WBD  
MSB  
FIFO A(B) Microcontroller to DSP (DSP to microcontroller)  
MIntCtrl  
SynData0  
SynData1  
SynData2  
SynData3  
SynCtrl0  
Clear-F  
Clear-D  
Send-C  
AGCEN  
AFCEN  
FMRXEN Reserved  
LSB  
LSB  
LSB  
LSB  
MSB  
MSB  
MSB  
SEL[2:0]  
LOWVAL  
HIGHVAL  
NUMCLKS  
MSB/LSB  
FIRST  
08h  
SynCtrl1  
Reserved  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
SynCtrl2  
MCClock  
RSSI A/D  
BAT A/D  
Reserved  
Reserved  
CLKPOL  
MSB  
LSB  
LSB  
MSB  
MSB  
MSB  
LSB  
LCD D/A  
MStatCtrl  
TXI Offset  
TXQ Offset  
LSD  
TXONIND SYNRDY MCLKEN CVRDY  
Reserved  
AuxFS1  
LCDEN  
SYNOL  
AuxFS0  
MPAEN  
LSB  
Reserved  
Reserved  
Sign  
Sign  
MSB  
MSB  
LSB  
4–21  
 
Table 4–17. Microcontroller Register Definitions  
CATEGORY  
ADDR  
00h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
NAME  
R/W  
W
WBDCtrl  
WBD  
Wide-band data  
R
FIFO  
FIFO A(B) microcontroller to DSP (DSP to microcontroller)  
Interrupt/control status  
W/(R)  
R/W  
W
MIntCtrl  
SynData0  
SynData1  
SynData2  
SynData3  
SynCtrl0  
SynCtrl1  
SynCtrl2  
MCClock  
RSSI A/D  
BAT A/D  
LCD D/A  
MStatCtrl  
TXI Offset  
TXQ Offset  
W
W
Synthesizer interface  
W
W
W
W
Microcontroller clock speed  
RSSI level  
W
R
Battery level monitor  
LCD contrast control  
Miscellaneous status/control  
R
W
R/W  
W
Transmit dc offset compensation  
W
4.16 Wide-Band Data/Control Register  
This register is used for two functions, depending on whether it is being read from or written to. When read  
from, the register provides the latest 8 bits of received and demodulated data according to the  
microcontroller register map to the microcontroller. When it is written to, the bits are placed into the WBDCtrl  
register (see Table 4–16) as shown here:  
7
WBD_LCKD  
W
6
WBD_ON  
W
5–3  
WBD_BW[2:0]  
W
2–0  
WBDCtrl  
Reserved  
When the WBDCtrl register is read, bit 7 (MSB) is the last received data bit.  
The definition of the WBDCtrl register, according to the DSP register map, is shown in Table 4–18.  
4–22  
 
Table 4–18. WBDCtrl Register  
FUNCTION  
BIT  
9
R/W  
NAME  
RESET VALUE  
Wide-band data lock data. WBD_LCKD determines whether edge  
detector is locked (1) or unlocked (0).  
R/W WBD_LCKD  
0
8
R/W WBD_ON  
Wide-banddataon. WBD_ONturnstheWBDDmoduleon/off(1/0).  
0
7–5 R/W WBD_BW[2:0] Wide-band data bandwidth. WBD_BW[2:0] sets the appropriate  
PLL bandwidth.  
110  
000  
001  
010  
011  
100  
101  
110  
:
:
:
:
:
:
20 Hz  
39 Hz  
78 Hz  
156 Hz  
313 Hz  
625 Hz  
1250 Hz  
:
4–0  
Reserved  
4.17 Microcontroller Status and Control Registers  
MCClock: This location is used by the microcontroller to change the speed of its own clock. The division  
modulus is equal to a binary coded value written into this register. Only bits [5:0] are significant. After reset,  
MCClock is equal to MCLKIN/32. Division moduli 2 through 32 are valid (0-1 moduli are prohibited). The  
clock speed change occurs after the write is complete.  
MIntCtrlBits[7:4]: Thebitnamesinthisfieldindicatetheresultingactionwhenthebitissetto1. Whenthese  
bits are being read, a 1 indicates that the corresponding interrupt is pending. A 0 indicates that the interrupt  
is clear. Writing a 0 into any bit location has no effect.  
MIntCtrl Bits [3:1]: These bits enable power to the AGC and AFC DACs and their corresponding outputs as  
shown below. FMRXEN can assert (set to 1) the FMRXEN external function. The reset value is 0 (off).  
7
6
5
4
3
2
1
0
Clear  
WBD  
Clear-F  
R/W  
Clear-D  
R/W  
Send-C  
R/W  
AGCEN  
R/W  
AFCEN  
R/W  
FMRXEN Reserved  
R/W  
MIntCtrl  
R/W  
MStatCtrl: This register contains various signals needed for system monitoring and control as shown here  
(also see Table 4–19).  
7
SYNOL  
R
6
5
4
3
CVRDY  
R
2
1
0
MStatCtrl  
TXONIND SYNRDY  
MCLKEN  
R/W  
AuxFS1  
R/W  
AuxFS0  
R/W  
MPAEN  
R/W  
R
R
4–23  
 
Table 4–19. MStatCtrl Register Bits  
FUNCTION  
BIT R/W  
NAME  
RESET VALUE  
Synthesizer out of lock. SYNOL is equal to the level applied to SYNOL  
input pin. SYNOL can be used as an input for an externally generated  
status signal to prevent transmission when external synthesizers are  
out of lock. In digital mode, when SYNOL is high, PAEN is not asserted  
and no signal can be transmitted from TXIP, TXIN, TXQP, and TXQN.  
Level on  
SYNOL input  
terminals  
7
R
SYNOL  
Transmitter on indicator. TXONIND is equal to the level applied to  
Level for  
6
5
4
3
R
R
TXONIND TXONIND, and it can indicate that power is applied to the power TXONIND input  
amplifier.  
terminals  
Synthesizer interface ready. SYNRDY indicates that frequency  
synthesizer is ready to be programmed by the microcontroller. When  
SYNRDY is 1, the microcontroller can program the frequency  
synthesizer interface; a 0 indicates the interface circuit is busy.  
SYNRDY  
1
MCLKOUT enable. When MCLKEN is set to 1 by the microcontroller,  
R/W MCLKEN the 38.88-MHz master clock is output at MCLKOUT. Writing 0 to  
MCLKEN disables MCLKOUT.  
1
1
Conversion ready. A 1 indicates that the latest RSSI or battery voltage  
A/D conversion is complete and can be read from the RSSI or battery  
registerlocation. CVRDY goes to 0 when themicrocontrollerreadsfrom  
either of these locations.  
R
CVRDY  
Auxiliary DACs full-scale select. The auxiliary DACs are AGC, AFC,  
PWRCONT and also LCD CONTR DAC. The microcontroller selects  
the full-scale output ranges with these bits (see Table 4–11 and  
Table 4–12 for bit-to-output range mapping).  
2
1
0
AuxFS[1]  
AuxFS[0]  
0
0
0
R/W  
MicrocontrollerPA enable. A 0 indicates that the external PA enable line  
PAEN is prevented from going active (see Figure 4–9).  
R/W MPAEN  
TXI Offset and TXQ Offset: These registers allow the differential offset voltages TXIP – TXIN and  
TXQP – TXQN to be adjusted to compensate for internal and/or external offsets. The magnitude of  
adjustmentisD× stepsize, whereDisa6-bit, 2s-complementintegerwrittenintobits5–0oftheseregisters,  
as shown here:  
7–6  
5–0  
TXI(Q) Offset Value  
W
TXI(Q) Offset  
Reserved  
4.18 LCD Contrast  
The LCD contrast register allows for 16 levels of control of terminal LCD contrast. The register is input to  
the LCD contrast D/A converter allowing control of the level of intensity of the LCD display as shown here:  
7–4  
LCD Contrast  
W
3–1  
0
LCDEN  
(active low)  
Reserved  
LDC D/A  
W
4–24  
 
4.19 DSP Register Map  
The register map accessible to the DSP port is shown in Table 4–20 and Table 4–21. There are 14 system  
addressable locations. Note that the write address of FIFO B is the same as the read address of FIFO A.  
Figure 4-11 details the connection of TCM4300 to an example DSP.  
Table 4–20. DSP Register Map  
ADDR  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
NAME  
WBD  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
LSB  
D1  
D0  
MSB  
Reserved  
WBDCtrl  
RXI  
WBD_LCKD WBD_ON  
WBD_BW  
Reserved  
Sign  
Sign  
MSB  
MSB  
MSB  
MSB  
LSB  
RXQ  
LSB  
LSB  
LSB  
TXI  
Sign  
TXQ  
Sign  
FIFO  
MSB  
FIFO A(B) microcontroller to DSP (DSP to microcontroller)  
LSB  
Reserved  
DlntCtrl  
Timing Adj  
AGC DAC  
AFC DAC  
PWR DAC  
DStatCtrl  
BST Offset  
Clear WBD  
MSB  
SDIS  
Clear-C Send-D  
Send-F  
Reserved  
LSB  
Reserved  
MSB  
LSB  
LSB  
LSB  
MSB  
Reserved  
Reserved  
MSB  
TXGO  
MODE  
SCEN FMVOX FMRXEN IQRXEN TXEN OUT1 RXOF ALB  
Reserved MSB LSB  
Table 4–21. DSP Register Definitions  
CATEGORY  
ADDR  
00h  
NAME  
WBD  
R/W  
Wide-band data  
R
01h  
WBDCtrl  
RXI  
Wide-band data control  
R/W  
02h  
RX channel A/D results  
R
W
W
03h  
RXQ  
Analog mode: TXI D/A data  
Digital mode: π/4 DQPSK modulator input data  
Analog mode: TXQ D/A data  
Digital mode: Not used  
FIFO A(B) microcontroller to DSP (DSP to microcontroller)  
Interrupt control/status  
04h  
05h  
TXI  
TXQ  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
FIFO  
R/(W)  
R/W  
W
DIntCtrl  
Timing Adj  
AGC DAC  
AFC DAC  
PWR DAC  
DStatCtrl  
BST Offset  
Symbol timing adjust  
AGC  
W
AFC  
W
Power control  
W
Miscellaneous status/control  
TDM burst offset  
R/W  
W
4–25  
 
10  
4
DSPD[9:0]  
DSPA[3:0]  
DSPCSL  
D[15:6]  
A[3:0]  
IS  
DSPRW  
DSPSTRBL  
SINT  
R/W  
TCM4300  
DSP  
STRB  
INT 1  
INT 3  
INT 4  
CINT  
BDINT  
Figure 4–11. DSP Interface  
4.20 Wide-Band Data Registers  
Bit 9 of the wide-band data register is the most recently received bit as shown below.  
9–2  
WB Data  
R
1–0  
WBD  
Reserved  
9
8
7–5  
4–0  
WBDCtrl  
WBD_LCKD  
WBD_ON  
R/W  
WBD_BW  
Reserved  
4.21 Base Station Offset Register  
BST OFFSET values are 00, 01, 10, and 11, which correspond to an offset value d of 0, 1, 2, and 3  
respectively as shown below.  
9–2  
1–0  
Offset[1:0]  
W
BST OFFSET  
Reserved  
The delay in the TCM4300 TX channels is increased by the amount:  
T
SINT  
4
BST OFFSET  
d
4–26  
 
4.22 DSP Status and Control Registers  
DIntCtrl, Clear and Send Bits: The bit names in the DIntCtrl register indicate the action to be taken when  
a 1 is written to the respective bit. When these bits are being read, a 1 indicates that the corresponding  
interrupt is pending. A 0 indicates that the interrupt is not pending. Writing a 0 to any bit has no effect. Writing  
a 1 to the clear bits clears the corresponding interrupt, and the interrupt terminal returns to its inactive level.  
Writing a 1 to the send bits causes the corresponding interrupt to go active.  
DIntCtrl, SDIS: When a 1 is written to the SDIS bit, the SINT interrupt going to the DSP is disabled. The  
disabling and re-enabling function is buffered to prevent the SINT signal from having shortened periods of  
output active. The SDIS bit is active (1) upon reset.  
9
8
7
6
5
4–0  
DlntCtrl  
Clear WBD  
SDIS Clear-C Send-D Send-F  
R/W  
Reserved  
The DStatCtrl register contains various signals needed for system monitoring and control. These are  
described in Table 4–22.  
9
8
7
6
5
4
3
2
1
0
DStatCtrl  
TXGO  
MODE SCEN FMVOX  
FMRXEN  
IQRXEN  
TXEN OUT1 RXOF  
ALB  
R/W  
Table 4–22. DStatCtrl Register Bits  
FUNCTION  
RESET  
VALUE  
BIT R/W  
NAME  
Transmitter go. TXGO is used in digital mode to initiate (1) and terminate  
(0) a transmit burst.  
9
8
R/W TXGO  
R/W MODE  
0
Digital (1) – Analog (0) mode select. MODE affects the clock dividers and  
the transmitter modes of operation and the Q side filter.  
0
0
Speech codec enable (microphone/speaker interface chip). SCEN is  
connected to bits. SCEN also enables (1) or disables (0) the internal  
speech codec clock generation circuits (2.048 MHz – 8 kHz outputs).  
7
R/W SCEN  
FM voice enable. When FMVOX is 1 it enables the Q side of the internal  
receiver circuits and connects the receivers Q channel input to FM (see  
Figure 4–9).  
6
5
R/W FMVOX  
0
0
R/W FMRXEN FM receiver enable. FMRXEN is connected to bit 5 (see Figure 4–9).  
I and Q receiver enable. The IQRXEN is connected to bit 4. When IQRXEN  
is 1, it enables (1) power to the I and Q sides of the internal receiver circuits,  
and when IQRXEN is 0, it disables (0) power to the I and Q sides of the  
4
R/W IQRXEN  
0
internal receiver circuits (see Figure 4–9).  
Transmitterenable. TXEN is connected to bit 3. When TXEN is 1, it enables  
3
2
R/W TXEN  
OUT1  
(1)powertotheinternaltransmittercircuits andwhenTXENis0, it disables  
(0) power to the internal transmitter circuits (see Figure 4–9).  
0
0
W
Output 1. OUT1 is a user-defined general purpose data or control signal.  
Receive channel offset. When RXOF = 1, it disconnects the RXIP, RXIN,  
RXQP, and RXQN terminals from receive channel, and shorts internal  
RXIP to RXIN and RXQP to RXQN. It provides the capability of measuring  
the dc offset of the receive channel.  
1
0
R/W RXOF  
R/W ALB  
0
0
Analog loop-back. When ALB = 1, it disconnects the RXIP, RXIN, RXQP,  
and RXQN terminals from the internal receive channels and connects the  
corresponding internal signals to attenuated copies of the TXIP, TXIN,  
TXQP, and TXQN signals. The attenuation factor is 8.  
4–27  
 
4.23 Reset  
A low on RSINL causes the TCM4300 internal registers to assume their reset values. The power-on reset  
circuit also causes internal reset. However, the logic level at RSINL has no effect on reset outputs RSOUTH  
and RSOUTL. The effects of resetting the TCM4300 are described in the following paragraphs.  
4.23.1 Power-On Reset  
The power-on reset (POR) is digitally implemented and provides a timed POR signal at RSOUTL and  
RSOUTH. The POR pulse duration is equal to 388,800 cycles of MCLKIN (10 ms). There are two outputs  
to provide a high reset and a low reset in order to accommodate the reset polarity requirements of any  
external device. The TCM4300 internal registers are reset when the POR outputs are activated. See  
Figure 4–12.  
DV  
DD  
t
w
10 ms Minimum  
90%  
10%  
90%  
10%  
RSOUTH  
RSOUTL  
Figure 4–12. Power-On Reset Timing  
4.23.2 Internal Reset State  
After power-on reset, the TCM4300 register bits are initialized to the values shown in Table 4–23. The  
synthesizer control terminals SYNCLK, SYNLE0, SYNLE1, SYNLE2, and SYNDTA are high after reset, and  
the synthesizer interface circuit is in the stable idle state with no SYNCLK outputs.  
Table 4–23. Power-On Reset Register Initialization  
REGISTER NAME  
DIntCtrl  
BIT 9  
8
1
0
7
0
6
0
5
0
0
0
1
0
4
r
3
r
2
r
1
r
0
r
0
0
DStatCtrl  
MIntCtrl  
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
r
0
0
MStatCtrl  
MCClock  
ext  
ext  
0
0
NOTE 5: r= reserved; ext= bit value from external terminal  
4–28  
 
4.24 Microcontroller Interface  
The microcontroller interface of the TCM4300 is a general purpose bus interface (see Table 4–24) which  
ensurescompatibilitywithawiderangeofmicrocontrollers, includingtheMitsubshiM37700seriesandmost  
Intel and Motorola series. The interface consists of a pair of microcontroller type select inputs MTS1 and  
MTS0, address and data buses, as well as several input and output control signals that are designed to  
operate in a manner compatible with the microcontroller selected by the user. See Sections 3.2 to 3.11 for  
Interface timing requirements.  
Table 4–24. Microcontroller Interface Configuration  
POLARITY  
MTS1  
MTS0  
MODE  
DATA STROBE (DS)  
ACTIVE  
INTERRUPT/OUTPUT  
ACTIVE  
Low  
0
0
Intel  
High  
(separate read and write)  
1
0
1
0
1
1
Motorola 16-bit and Mitsubishi  
Motorola 8-bit  
Low  
High  
N/A  
Low  
Low  
N/A  
Reserved  
The microcontroller interface of the TCM4300 is designed to allow direct connection to many  
microcontrollers. Except for the interrupt terminals, it is designed to connect to microcontrollers in the same  
manner as a memory device.  
The internal chip select is asserted when MCCSH = 1 and MCCSL = 0.  
4.24.1 Intel Microcontroller Mode Of Operation  
When the microcontroller type select inputs MTS1 and MTS0 are both held low, the TCM4300 micro-  
controller interface is configured into Intel mode (see Table 4-25). In this mode, the interface uses separate  
read and write control strobes and active-high interrupt signals. The processor RD and WR strobe signals  
should be connected to the TCM4300 MCDS signal and MCRW signal, respectively. The multiplexed  
address and data buses of the microcontroller must be demultiplexed by external hardware. Table 4–25 lists  
the microcontroller interface connections for Intel mode.  
Table 4–25. Microcontroller Interface Connections for Intel Mode  
TCM4300  
MICROCONTROLLER TERMINAL  
TERMINAL  
MTS1, MTS0  
MCCSH  
Tie to logic level low  
Not on microcontroller; can be used for address decoding  
Not on microcontroller; can be used for address decoding  
MCCSL  
MCD7–MCD0 AD[7:0] data bus on microcontroller  
MCA4–MCA0 Demultiplexed address bits not on microcontroller  
MCRW  
MCDS  
WR (Active-low write data strobe)  
RD (Active-low read data strobe) MCDS configured to active-low operation by MTS1 and MTS0. The  
microcontroller bus must be demultiplexed by external hardware.  
MWBDFINT  
DINT  
Either one of INT3 through INT0 as appropriate  
Either one of INT3 through INT0 as appropriate  
4–29  
 
4.24.2 Mitsubishi Microcontroller Mode of Operation  
When the microcontroller type select MTS1 and MTS0 inputs are held high and low, respectively, the  
TCM4300 microcontroller interface is configured in Mitsubishi mode. In this mode, the interface has a single  
read/write control (R/W) signal, an active-low data strobe (MCDS) signal, and active-low interrupt request  
signals. The processor E and R/(W) signals should be connected to the TCM4300 MCDS signal and the  
MCRW signal, respectively. Table 4–26 lists the microcontroller interface connections for Mitsubishi mode.  
Table 4–26. Microcontroller Interface Connections for Mitsubishi Mode  
TCM4300  
MICROCONTROLLER TERMINAL  
TERMINAL  
MTS1, MTS0  
MCCSH  
Tie to logic levels: high and low, respectively  
Not on microcontroller; can be used for address decoding  
Not on microcontroller; can be used for address decoding  
D[7:0] data bus on microcontroller  
MCCSL  
MCD7–MCD0  
MCA4–MCA0  
MCRW  
A[4:0]  
R/W  
MCDS  
E (Active-low read data strobe) MCDS configured to active-low operation by MTS1 and MTS0.  
Either one of INT3 through INT0 as appropriate  
Either one of INT3 through INT0 as appropriate  
MWBDFINT  
DINT  
4.24.3 Motorola Microcontroller Mode of Operation  
When the microcontroller selects MTS0 = high and MTS1 = low, the TCM4300 microcontroller interface is  
configured for 8-bit family (6800 family derivatives, e.g., 68HC11D3 and 68HC11G5) bus characteristics,  
and when the microcontroller selects MTS0 = low and MTS1 = high, the microcontroller interface is  
configuredfor 16-bit family (680 × 0 family derivatives, e.g., 68008 and 68302) characteristics. The Motorola  
mode makes use of a single read/write control (R/W) signal and active-low interrupt request signals. The  
processor E (8-bit) or DS (16-bit) and (R/W) control signals should be connected to the TCM4300 MCDS  
signal and the MCRW signal, respectively. Table 4–27 illustrates the connections between the TCM4300  
and an 8-bit Motorola processor. Table 4–28 illustrates the connections between the TCM4300 and a 16-bit  
Motorola processor.  
Table 4–27. Microcontroller Interface Connections for Motorola Mode (8 bits)  
TCM4300  
MICROCONTROLLER TERMINAL  
TERMINAL  
MTS1, MTS0  
MCCSH  
Tie to logic levels: low and high, respectively  
Not on microcontroller; can be used for address decoding  
Not on microcontroller; can be used for address decoding  
PC[7:0] data bus on microcontroller  
MCCSL  
MCD7–MCD0  
MCA4–MCA0  
Demultiplexed address output. PF[4:0] on microcontroller for nonmultiplexed machines (e.g.,  
68CH11G5) and not on micro for multiplexed bus machines (e.g., 68HC11D3).  
MCRW  
MCDS  
R/W  
E (Active-high data strobe) MCDS configured to active-high operation by MTS1 and MTS0.  
IRQ and/or NMI as appropriate  
MWBDFINT  
DINT  
IRQ and/or NMI as appropriate  
4–30  
 
Table 4–28. Microcontroller Interface Connections for Motorola Mode (16 bits)  
TCM4300  
MICROCONTROLLER TERMINAL  
TERMINAL  
MTS1, MTS0  
MCCSH  
Tie to logic levels: high and low, respectively  
Not on microcontroller; can be used for address decoding  
Not on microcontroller (68000, 68008) CS1, CS2, or CS3 (68302)  
D[7:0] data bus on microcontroller  
MCCSL  
MCD7–MCD0  
MCA4–MCA0  
A[4:0] (68008)  
A[5:1] (68000, 68302)  
MCRW  
MCDS  
R/W  
DS active-low data strobe (68008)  
LDS (active-low data strobe) (68000, 68302) MCDS configured to active-low operation by MTS1  
and MTS0.  
MWBDFINT  
DINT  
IACK7, IACK6, or IACK1 (68302)  
Not on microcontroller (68000, 68008)  
Either one of INT3 through INT0 as appropriate  
4–31  
 
4–32  
 
5 Mechanical Data  
5.1 PZ (S-PQFP-G100)  
PLASTICQUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
14,20  
SQ  
Gage Plane  
13,80  
16,20  
SQ  
15,80  
0,25  
0,05 MIN  
0°7°  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/A 03/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MO-136  
5–1  
 
IMPORTANT NOTICE  
Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor  
product or service without notice, and advises its customers to obtain the latest version of relevant information  
to verify, before placing orders, that the information being relied on is current.  
TI warrants performance of its semiconductor products and related software to the specifications applicable at  
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are  
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each  
device is not necessarily performed, except those mandated by government requirements.  
Certain applications using semiconductor products may involve potential risks of death, personal injury, or  
severe property or environmental damage (“Critical Applications”).  
TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED  
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS.  
Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI  
products in such applications requires the written approval of an appropriate TI officer. Questions concerning  
potential risk applications should be directed to TI through a local SC sales office.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards should be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance, customer product design, software performance, or  
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either  
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property  
right of TI covering or relating to any combination, machine, or process in which such semiconductor products  
or services might be or are used.  
Copyright 1996, Texas Instruments Incorporated  
 

Toshiba Copier MD 0101 User Manual
Toshiba Cordless Telephone SX 2801 User Manual
Toshiba DVR DVS16 480H X User Manual
TRENDnet Switch TEGS50G User Manual
Tripp Lite Surge Protector 93 2234 User Manual
UMA Enterprises Music Mixer UMA 35T User Manual
UNICOM Electric Switch SmartGST 2402 User Manual
Uniden Cable Box BCD996T User Manual
Uniden Two Way Radio uh043sx 2 User Manual
United States Stove Stove 6039HF User Manual