Fujitsu Recording Equipment MB15F74UV User Manual

FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS04-21381-1E  
ASSP  
Dual Serial Input  
PLL Frequency Synthesizer  
MB15F74UV  
DESCRIPTION  
The Fujitsu MB15F74UV is a serial input Phase Locked Loop (PLL) frequency synthesizer with a 4000 MHz and  
a 2000 MHz prescalers. A 64/65 or a 128/129 for the 4000 MHz prescaler, and a 32/33 or a 64/65 for the  
2000 MHz prescaler can be selected for the prescaler that enables pulse swallow operation.  
The BiCMOS process is used, as a result a supply current is typically 9.0 mA at 3.0 V. The supply voltage range  
is from 2.7 V to 3.6 V. A refined charge pump supplies well-balanced output current with 1.5 mA and 6 mA  
selectable by serial date. The serial data format is the same as MB15F74UL. Fast locking is achieved for adopting  
the new circuit.  
MB15F74UV is in the small package (BCC18) which decreases a mount area of MB15F74UV about 50% com-  
paring with the former BCC20 (for dual PLL) .  
FEATURES  
• High frequency operation  
: RF synthesizer : 4000 MHz Max  
: IF synthesizer : 2000 MHz Max  
: VCC = 2.7 V to 3.6 V  
• Low power supply voltage  
• Ultra low power supply current : ICC = 9.0 mA Typ  
(VCC = 3.0 V, Ta = +25 °C, SWIF = SWRF = 0 in IF/RF locking state)  
(Continued)  
PACKAGE  
18-pin plastic BCC  
(LCC-18P-M05)  
 
MB15F74UV  
PIN DESCRIPTION  
Pin  
name  
Pin no.  
I/O  
Descriptions  
1
2
GND  
Ground pin for OSC input buffer and the shift register circuit.  
Prescaler input pin for the IF-PLL.  
Connection to an external VCO should be AC coupling.  
finIF  
I
I
Prescaler complimentary input for the IF-PLL section.  
This pin should be grounded via a capacitor.  
3
4
5
6
XfinIF  
GNDIF  
VCCIF  
Ground pin for the IF-PLL section.  
Power supply voltage input pin for the IF-PLL section, the shift register and the oscillator  
input buffer.  
DoIF  
O
I
Charge pump output for the IF-PLL section.  
Power saving mode control pin for the IF-PLL section. This pin must be set at “L” when  
the power supply is started up. (Open is prohibited.)  
PSIF = “H” ; Normal mode/PSIF = “L” ; Power saving mode  
7
8
9
PSIF  
LD/fout  
PSRF  
Lock detect signal output (LD) /phase comparator monitoring output (fout) pin. The out-  
put signal is selected by LDS bit in a serial data.  
LDS bit = “H” ; outputs fout signal/LDS bit = “L” ; outputs LD signal  
O
Power saving mode control for the RF-PLL section. This pin must be set at “L” when the  
power supply is started up. (Open is prohibited. )  
I
PSRF = “H” ; Normal mode/PSRF = “L” ; Power saving mode  
10  
11  
12  
DoRF  
VCCRF  
O
Charge pump output for the RF-PLL section.  
Power supply voltage input pin for the RF-PLL section.  
Ground pin for the RF-PLL section  
GNDRF  
Prescaler complimentary input pin for the RF-PLL section.  
This pin should be grounded via a capacitor.  
13  
14  
XfinRF  
finRF  
I
I
Prescaler input pin for the RF-PLL.  
Connection to an external VCO should be via AC coupling.  
Load enable signal input pin (with the schmitt trigger circuit)  
When LE is set “H”, data in the shift register is transferred to the corresponding latch ac-  
cording to the control bit in a serial data.  
15  
16  
LE  
I
I
Serial data input pin (with the schmitt trigger circuit)  
Data is transferred to the corresponding latch (IF-ref. counter, IF-prog. counter,  
RF-ref. counter, RF-prog. counter) according to the control bit in a serial data.  
Data  
Clock input pin for the 23-bit shift register (with the schmitt trigger circuit)  
One bit data is shifted into the shift register on a rising edge of the clock.  
17  
18  
Clock  
I
I
The programmable reference divider input pin. TCXO should be connected with an AC  
coupling capacitor.  
OSCIN  
3
 
MB15F74UV  
BLOCK DIAGRAM  
VCCIF GNDIF  
(4)  
(5)  
Intermittent  
mode control  
(IF-PLL)  
3 bit latch  
PSIF (7)  
7 bit latch  
Binary 7-bit  
11 bit latch  
Binary 11-bit  
Charge  
pump  
(IF-PLL)  
Phase Fast  
comp. lock  
(IF-PLL) Tuning  
Current  
Switch  
(6)  
DoIF  
swallow counter programmable  
(IF-PLL)  
counter (IF-PLL)  
fpIF  
(2)  
(3)  
finIF  
Prescaler  
(IF-PLL)  
(32/33, 64/65)  
Lock Det.  
(IF-PLL)  
XfinIF  
2 bit latch  
14 bit latch  
1 bit latch  
LDIF  
Binary 14-bit pro-  
grammable ref.  
counter(IF-PLL)  
C/P setting  
counter  
T1 T2  
frIF  
Fast  
lock  
OSCIN (18)  
Tuning  
Selector  
AND  
LDRF  
frRF  
LD  
frIF  
frRF  
fpIF  
fpRF  
Binary 14-bit pro-  
grammable ref.  
counter (RF-PLL))  
T1 T2  
C/P setting  
counter  
(8) LD/  
OR  
fout  
2 bit latch  
14 bit latch  
1 bit latch  
fpRF  
Prescaler  
(RF-PLL)  
(64/65, 128/129)  
finRF  
(14)  
Lock Det.  
(RF-PLL)  
(
13  
)
XfinRF  
Phase  
comp.  
(RF-PLL)  
Charge  
pump  
(RF-PLL)  
Binary 11-bit  
programmable  
counter (RF-PLL)  
Binary 7-bit  
swallow counter  
(RF-PLL)  
Current  
Switch  
(10)  
DoRF  
Intermittent  
mode control  
(RF-PLL)  
(9)  
PSRF  
fpRF  
3 bit latch  
7 bit latch  
11 bit latch  
Schmitt  
trigger  
circuit  
LE  
(15)  
Latch selector  
Schmitt  
trigger  
circuit  
C
N
1
C
N
2
Data (16)  
23-bit shift register  
Schmitt  
trigger  
circuit  
Clock  
(17)  
(1)  
(11)  
(12)  
VCCRF GNDRF  
GND  
4
 
MB15F74UV  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Parameter  
Symbol  
Unit  
Min  
0.5  
0.5  
GND  
GND  
55  
Max  
Power supply voltage  
Input voltage  
VCC  
VI  
4.0  
VCC + 0.5  
VCC  
V
V
LD/fout  
Output voltage  
VO  
V
DoIF, DoRF  
VDO  
Tstg  
VCC  
V
Storage temperature  
+125  
°C  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
RECOMMENDED OPERATING CONDITIONS  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Min  
2.7  
Typ  
Max  
3.6  
Power supply voltage  
Input voltage  
VCC  
VI  
3.0  
V
VCCRF = VCCIF  
GND  
40  
VCC  
+85  
V
Operating temperature  
Ta  
°C  
Note : VCCRF and VCCIF must supply equal voltage.  
Even if either RF-PLL or IF-PLL is not used, power must be supplied to VCCRF and VCCIF to keep them  
equal.  
It is recommended that the non-use PLL is controlled by power saving function.  
Although this device contains an anti-static element to prevent electrostatic breakdown and the circuitry  
has been improved in electrostatic protection, observe the following precautions when handling the device.  
When storing and transporting the device, put it in a conductive case.  
Beforehandlingthedevice, confirmthe (jigsand)toolstobeusedhavebeenuncharged(grounded)as  
well as yourself. Use a conductive sheet on working bench.  
Before fitting the device into or removing it from the socket, turn the power supply off.  
When handling (such as transporting) the device mounted board, protect the leads with a conductive  
sheet.  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
5
 
MB15F74UV  
*
ELECTRICAL CHARACTERISTICS  
(VCC = 2.7 V to 3.6 V, Ta = 40 °C to +85 °C)  
Value  
Unit  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
finIF = 2000 MHz  
ICCIF *1  
2.1  
2.5  
3.2  
mA  
mA  
VCCIF = 3.0 V  
Power supply current  
finRF = 2500 MHz  
VCCRF = 3.0 V  
ICCRF *1  
5.7  
6.5  
8.4  
IPSIF  
IPSRF  
finIF  
PSIF = PSRF = “L”  
PSIF = PSRF = “L”  
IF PLL  
0.1*2  
0.1*2  
10  
10  
µA  
Power saving current  
Operating frequency  
Input sensitivity  
µA  
finIF *3  
finRF *3  
OSCIN  
finIF  
200  
2000  
3
2000  
4000  
40  
MHz  
MHz  
MHz  
dBm  
dBm  
VP-P  
finRF  
fOSC  
RF PLL  
PfinIF  
IF PLL, 50 system  
15  
10  
0.5  
+2  
finRF  
PfinRF RF PLL, 50 system  
+2  
Input available voltage OSCIN  
VOSC  
1.0  
1.5  
0.7 VCC  
+ 0.4  
“H” level input voltage  
“L” level input voltage  
VIH  
VIL  
Schmitt trigger input  
Schmitt trigger input  
V
V
Data  
LE  
Clock  
0.3 VCC  
0.4  
“H” level input voltage  
“L” level input voltage  
VIH  
VIL  
0.7 VCC  
V
V
PSIF  
PSRF  
0.3 VCC  
IIH *4  
IIL *4  
1.0  
+1.0  
µA  
µA  
Data  
LE  
Clock  
PS  
“H” level input current  
“L” level input current  
1.0  
+1.0  
“H” level output voltage  
“L” level output voltage  
“H” level output voltage  
“L” level output voltage  
VOH  
VOL  
VCC = 3.0 V, IOH = 1 mA  
VCC = 3.0 V, IOL = 1 mA  
VCC = 3.0 V, IDOH = 0.5 mA  
VCC = 3.0 V, IDOL = 0.5 mA  
VCC 0.4  
V
V
V
V
LD/  
fout  
0.4  
VDOH  
VDOL  
VCC 0.4  
DoIF  
DoRF  
0.4  
2.5  
High impedance cutoff DoIF  
current  
VCC = 3.0 V  
VOFF = 0.5 V to VCC 0.5 V  
IOFF  
nA  
DoRF  
“H” level output current  
“L” level output current  
IOH *4  
VCC = 3.0 V  
VCC = 3.0 V  
1.0  
mA  
mA  
LD/  
fout  
IOL  
1.0  
VCC = 3.0 V,  
VDOH = VCC / 2,  
Ta = +25 °C  
CS bit = “1”  
CS bit = “0”  
CS bit = “1”  
CS bit = “0”  
8.2  
6.0  
1.5  
6.0  
4.1  
0.8  
8.2  
mA  
mA  
mA  
mA  
DoIF *8  
DoRF  
“H” level output current  
“L” level output current  
IDOH *4  
2.2  
4.1  
VCC = 3.0 V,  
VDOL = VCC / 2,  
Ta = +25 °C  
DoIF *8  
DoRF  
IDOL  
0.8  
1.5  
2.2  
(Continued)  
6
 
MB15F74UV  
(Continued)  
(VCC = 2.7 V to 3.6 V, Ta = 40 °C to +85 °C)  
Value  
Unit  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
IDOL/IDOH IDOMT *5  
vs VDO IDOVD *6  
VDO = VCC / 2  
3
10  
%
%
Charge pump  
current rate  
0.5 V VDO VCC 0.5 V  
10  
15  
40 °C Ta 85 °C,  
VDO = VCC / 2  
vs Ta  
IDOTA *7  
5
10  
%
*1 : Conditions ; fosc = 12.8 MHz, Ta = +25 °C, SW = “0” in locking state.  
*2 : VCCIF = VCCRF = 3.0 V, fosc = 12.8 MHz, Ta = +25 °C, in power saving mode.  
PSIF = PSRF = GND  
VIH = VCC, VIL = GND (at CLK, Data, LE)  
*3 : AC coupling. 1000 pF capacitor is connected under the condition of Min operating frequency.  
*4 : The symbol “–” (minus) means the direction of current flow.  
*5 : VCC = 3.0 V, Ta = +25 °C (||I3| |I4||) / [ (|I3| + |I4|) / 2] × 100 (%)  
*6 : VCC = 3.0 V, Ta = +25 °C [ (||I2| |I1||) / 2] / [ (|I1| + |I2|) / 2] × 100 (%) (Applied to both lDOL and lDOH)  
*7 : VCC =3.0V, [||IDO (+85 °C)||IDO (–40 °C)||/2]/[|IDO (+85 °C)|+|IDO (–40 °C)|/2]×100(%) (AppliedtobothIDOL andIDOH)  
*8 : When Charge pump current is measured, set LDS = “0” , T1 = “0” and T2 = “1”.  
I3  
I4  
I1  
I2  
I2  
IDOL  
IDOH  
I1  
0.5  
VCC/2  
VCC 0.5  
VCC  
Charge pump output voltage (V)  
7
 
MB15F74UV  
FUNCTIONAL DESCRIPTION  
1. Pulse swallow function  
fVCO = [ (P × N) + A] × fOSC ÷ R  
fVCO : Output frequency of external voltage controlled oscillator (VCO)  
P
N
A
: Preset divide ratio of dual modulus prescaler (32 or 64 for IF-PLL, 64or 128 for RF-PLL)  
: Preset divide ratio of binary 11-bit programmable counter (3 to 2,047)  
: Preset divide ratio of binary 7-bit swallow counter (0 A 127, A < N)  
fOSC : Reference oscillation frequency (OSCIN input frequency)  
: Preset divide ratio of binary 14-bit programmable reference counter (3 to 16,383)  
R
2. Serial Data Input  
The serial data is entered using three pins, Data pin, Clock pin, and LE pin. Programmable dividers of IF/RF-  
PLL sections, programmable reference dividers of IF/RF-PLL sections are controlled individually.  
The serial data of binary data is entered through Data pin.  
On rising edge of Clock, one bit of the serial data is transferred into the shift register. On a rising edge of load  
enable signal, the data stored in the shift register is transferred to one of latches depending upon the control bit  
data setting.  
The programmable The programmable  
The programmable  
The programmable  
reference counter reference counter counter and the swallow counter and the swallow  
for the IF-PLL  
for the RF-PLL  
counter for the IF-PLL  
counter for the RF-PLL  
CN1  
CN2  
0
0
1
0
0
1
1
1
(1) Shift Register Configuration  
Programmable Reference Counter  
(LSB)  
Data Flow  
(MSB)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CN1 CN2 T1 T2 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 CS X  
X
X
X
CS  
R1 to R14 : Divide ratio setting bits for the programmable reference counter (3 to 16,383)  
T1, T2 : LD/fout output setting bit  
CN1, CN2 : Control bit  
: Charge pump current select bit  
X
: Dummy bits (Set “0” or “1”)  
Note : Data input with MSB first.  
8
 
MB15F74UV  
• Programmable Counter  
(LSB)  
Data Flow  
(MSB)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
SWIF/  
SWRF  
FCIF/  
FCRF  
CN1 CN2 LDS  
A1 A2 A3 A4 A5 A6 A7 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11  
A1 to A7  
: Divide ratio setting bits for the swallow counter (0 to 127)  
: Divide ratio setting bits for the programmable counter (3 to 2,047)  
: LD/fout signal select bit  
N1 to N11  
LDS  
SWIF/SWRF  
FCIF/FCRF  
CN1, CN2  
: Divide ratio setting bit for the prescaler (IF : SWIF, RF : SWRF)  
: Phase control bit for the phase detector (IF : FCIF, RF : FCRF)  
: Control bit  
Note : Data input with MSB first.  
(2) Data setting  
Binary 14-bit Programmable Reference Counter Data Setting  
Divide ratio R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1  
3
0
0
0
0
0
0
0
0
0
0
0
0
1
1
4
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
16383  
Note : Divide ratio less than 3 is prohibited.  
Binary 11-bit Programmable Counter Data Setting  
Divide ratio N11 N10 N9 N8 N7 N6 N5 N4 N3 N2 N1  
3
0
0
0
0
0
0
0
0
0
1
1
4
0
0
0
0
0
0
0
0
1
0
0
1
1
1
1
1
1
1
1
1
1
1
2047  
Note : Divide ratio less than 3 is prohibited  
Binary 7-bit Swallow Counter Data Setting  
Divide ratio A7 A6 A5 A4 A3 A2 A1  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
127  
9
 
MB15F74UV  
Prescaler Data Setting  
Divide ratio  
SW = “1”  
32/33  
SW = “0”  
64/65  
Prescaler divide ratio IF-PLL  
Prescaler divide ratio RF-PLL  
64/65  
128/129  
• Charge Pump Current Setting  
Current value  
±6.0 mA  
CS  
1
±1.5 mA  
0
LD/fout output Selectable Bit Setting  
LD/fout pin state  
LD output  
frIF  
LDS  
T1  
T2  
0
0
0
1
1
0
1
0
1
0
0
0
1
1
0
frRF  
fpIF  
1
0
fout  
output  
1
1
fpRF  
1
1
Phase Comparator Phase Switching Data Setting  
FCIF, RF = “1”  
Phase comparator input  
DoIF, DoRF  
FCIF, RF = “0”  
DoIF, DoRF  
fr > fp  
fr < fp  
H
L
L
H
Z
fr = fp  
Z
Z : High-impedance  
Depending upon the VCO and LPF polarity, FC bit should be set.  
High  
(1)  
(1) VCO polarity FC = “1”  
(2) VCO polarity FC = “0”  
VCO Output  
Frequency  
(2)  
Max  
LPF Output voltage  
Note : Give attention to the polarity for using active type LPF.  
10  
 
MB15F74UV  
3. Power Saving Mode (Intermittent Mode Control Circuit)  
Status  
PS pin  
H
L
Normal mode  
Power saving mode  
The intermittent mode control circuit reduces the PLL power consumption.  
By setting the PS pin low, the device enters into the power saving mode, reducing the current consumption. See  
the Electrical Characteristics chart for the specific value.  
The phase detector output, Do, becomes high impedance.  
For the dual PLL, the lock detector, LD, is as shown in the LD Output Logic table.  
Setting the PS pin high, releases the power saving mode, and the device works normally.  
The intermittent mode control circuit also ensures a smooth startup when the device returns to normal operation.  
When the PLL is returned to normal operation, the phase comparator output signal is unpredictable. This is  
because of the unknown relationship between the comparison frequency (fp) and the reference frequency (fr)  
which can cause a major change in the comparaor output, resulting in a VCO frequency jump and an increase  
in lockup time.  
To prevent a major VCO frequency jump, the intermittent mode control circuit limits the magnitude of the error  
signal from the phase detector when it returns to normal operation.  
Notes : When power (VCC) is first applied, the device must be in standby mode.  
PS pin must be set “L” at Power-ON.  
OFF  
ON  
VCC  
tV 1 µs  
Clock  
Data  
LE  
PS  
tPS 100 ns  
(1)  
(2)  
(3)  
(1) PS = L (power saving mode) at Power-ON  
(2) Set serial data at least 1 µs after the power supply becomes stable (VCC 2.2 V) .  
(3) Release power saving mode (PSIF, PSRF : “L” “H”) at least 100 ns later after setting serial data.  
11  
 
MB15F74UV  
4. Serial Data Data Input Timing  
Divide ratio is performed through a serial interface using the Data pin, Clock pin, and LE pin.  
Setting data is read into the shift register at the rise of the Clock signal, and transferred to a latch at the rise of  
the LE signal. The following diagram shows the data input timing.  
1st data  
2nd data  
Invalid data  
Control bit  
Data  
MSB  
LSB  
Clock  
LE  
t1  
t2  
t3  
t6  
t7  
t4  
t5  
Parameter Min  
Typ  
Max  
Unit  
ns  
Parameter  
Min  
100  
20  
Typ Max  
Unit  
ns  
t1  
t2  
t3  
t4  
20  
20  
30  
30  
t5  
t6  
t7  
ns  
ns  
ns  
100  
ns  
ns  
Note : LE should be “L” when the data is transferred into the shift register.  
12  
 
MB15F74UV  
PHASE COMPARATOR OUTPUT WAVEFORM  
frIF/RF  
fpIF/RF  
tWU  
tWL  
LD  
(FC bit = “1”)  
H
DoIF/RF  
Z
L
(FC bit = “0”)  
H
DoIF/RF  
Z
L
• LD Output Logic  
IF-PLL section  
Locking state/Power saving state  
Locking state/Power saving state  
Unlocking state  
RF-PLL section  
Locking state/Power saving state  
Unlocking state  
LD output  
H
L
L
L
Locking state/Power saving state  
Unlocking state  
Unlocking state  
Notes : Phase error detection range = 2π to +2π  
Pulses on DoIF/RF signals during locking state are output to prevent dead zone.  
LD output becomes low when phase error is tWU or more.  
LD output becomes high when phase error is tWL or less and continues to be so for three cycles or more.  
tWU and tWL depend on OSCIN input frequency as follows.  
tWU 2/fosc : e.g. tWU 156.3 ns when fosc = 12.8 MHz  
tWU 4/fosc : e.g. tWL 312.5 ns when fosc = 12.8 MHz  
13  
 
MB15F74UV  
TEST CIRCUIT (for Measuring Input Sensitivity fin/OSCIN)  
S.G.  
1000 pF  
50 Ω  
S.G.  
1000 pF  
Controller  
(divide ratio setting)  
50 Ω  
OSCIN  
Clock  
Data  
LE  
GND  
1
2
3
4
5
6
18  
17  
16  
15  
VCCRF  
S.G.  
1000 pF  
finRF  
14  
13  
12  
11  
10  
0.1 µF  
finIF  
1000 pF  
XfinIF  
50 Ω  
XfinRF  
1000 pF  
MB15F74UV  
GNDRF  
GNDIF  
VCCRF  
DoRF  
VCCIF  
DoIF  
7
8
9
VCCIF  
LD/  
fout  
PSIF  
PSRF  
0.1 µF  
Oscilloscope  
14  
 
MB15F74UV  
TYPICAL CHARACTERISTICS  
1. fin input sensitivity  
RF-PLL input sensitivity vs. Input frequency  
Ta = +25 C  
10  
0
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.6 V  
SPEC  
Catalog guaranteed range  
10  
20  
30  
40  
50  
1500  
2000  
2500  
3000  
3500  
4000  
4500  
5000  
finRF [MHz]  
IF-PLL input sensitivity vs. Input frequency  
10  
0
Ta = +25 C  
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.6 V  
SPEC  
Catalog guaranteed range  
10  
20  
30  
40  
50  
0
500  
1000  
1500  
2000  
2500  
3000  
finIF [MHz]  
15  
 
MB15F74UV  
2. OSCIN input sensitivity  
Input sensitivity vs. Input frequency  
10  
Catalog guaranteed  
range  
0
10  
20  
30  
40  
50  
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.6 V  
SPEC  
0
20  
40  
60  
80  
100  
120  
140  
160  
Input frequency fOSC (MHz)  
16  
 
MB15F74UV  
3. RF/IF-PLL Do output current  
• 1.5 mA mode  
IDO VDO  
2.50  
2.00  
VCC = 2.7 V, Ta = +25 C  
1.50  
1.00  
0.50  
0.00  
0.50  
1.00  
1.50  
2.00  
2.50  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Charge pump output voltage VDO (V)  
• 6.0 mA mode  
IDO VDO  
8.00  
6.00  
VCC = 2.7 V, Ta = +25 C  
4.00  
2.00  
0.00  
2.00  
4.00  
6.00  
8.00  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Charge pump output voltage VDO (V)  
17  
 
MB15F74UV  
4. fin input impedance  
finIF input impedance  
4 : 30.266 Ω  
102.92 Ω  
773.21 fF  
2 000.000 000 MHz  
1 : 494.28 Ω  
874.84 Ω  
200 MHz  
2 : 58.094 Ω  
216.47 Ω  
1 GHz  
3 : 39.773 Ω  
148 Ω  
1.5 GHz  
1
2
4
3
START 100.000 000 MHz  
STOP 2 000.000 000 MHz  
finRF input impedance  
4 : 20.93 Ω  
39.352 Ω  
1.0111 pF  
4 000.000 000 MHz  
1 :  
2 :  
3 :  
37.563  
109.96 Ω  
2 GHz  
26.125 Ω  
71.227 Ω  
3 GHz  
22.848 Ω  
54.025 Ω  
3.5 GHz  
4
1
3
2
START 2 000.000 000 MHz  
STOP 4 000.000 000 MHz  
18  
 
MB15F74UV  
5. OSCIN input impedance  
OSCIN input impedance  
4 : 278.69 Ω  
1.0537 kΩ  
3.7761 pF  
40.000 000 MHz  
1 : 2.25 kΩ  
2.2373 kΩ  
10 MHz  
2 : 881.62 Ω  
1.8299 kΩ  
20 MHz  
3 : 448.75 Ω  
1.353 kΩ  
4
30 MHz  
2
3
START 3.000 000 MHz  
STOP 40.000 000 MHz  
19  
 
MB15F74UV  
REFERENCE INFORMATION  
(for Lock-up Time, Phase Noise and Reference Leakage)  
fVCO = 2113.6 MHz  
VCC = 3.0 V  
Ta = + 25 °C  
CP : 6 mA mode  
Test Circuit  
KV = 50 MHz/V  
fr = 50 kHz  
fOSC = 19.2 MHz  
LPF  
S.G.  
OSCIN  
Do  
LPF  
fin  
7.5 kΩ  
1.6 kΩ  
Spectrum  
Analyzer  
VCO  
To VCO  
3300 pF  
0.01  
F
0.1  
F
• PLL Reference Leakage  
ATTEN 10 dB  
RL 0 dBm  
VAVG 16  
10 dB/  
MKR 80.83 dB  
50.0 kHz  
MKR  
50.0 kHz  
80.83 dB  
CENTER 2.1136000 GHz  
SPAN 200.0 kHz  
SWP 500 ms  
RBW 1.0 kHz  
VBW 1.0 kHz  
• PLL Phase Noise  
ATTEN 10 dB  
RL 0 dBm  
VAVG 16  
10 dB/  
MKR 65.34 dB/Hz  
1.00 kHz  
MKR  
1.00 kHz  
65.34 dB/Hz  
CENTER 2.11360000 GHz  
SPAN 10.00 kHz  
SWP 1.92 s  
RBW 30 Hz  
VBW 30 Hz  
(Continued)  
20  
 
MB15F74UV  
(Continued)  
PLL Lock Up time  
2113.6 MHz2173.6 MHz within ± 1 kHz  
L chH ch  
1.47 ms  
A Mkr x: 439.99764 µs  
y: 50.0009 MHz  
2.173604000 GHz  
2.173600000 GHz  
2.173596000 GHz  
-500 µs  
2.000 ms  
4.500 ms  
500 µs/div  
PLL Lock Up time  
2173.6 MHz2113.6 MHz within ± 1 kHz  
H chL ch 1.56 ms  
A Mkr x: 400.00146 µs  
y: 50.0013 MHz  
2.113604000 GHz  
2.113600000 GHz  
2.113596000 GHz  
-500 µs  
4.500 ms  
2.000 ms  
500 µs/div  
21  
 
MB15F74UV  
APPLICATION EXAMPLE  
1000 pF  
TCXO  
Controller  
(divide ratio setting)  
OSCIN  
Clock  
Data  
LE  
OUTPUT  
GND  
OUTPUT  
1
2
3
4
5
6
18  
17  
16  
15  
1000 pF  
1000 pF  
finRF  
14  
13  
12  
11  
10  
finIF  
XfinIF  
VCO  
LPF  
XfinRF  
GNDRF  
VCCRF  
DoRF  
1000 pF  
VCO  
1000 pF  
MB15F74UV  
GNDIF  
VCCRF  
LPF  
VCCIF  
0.1 µF  
7
8
9
DoIF  
VCCIF  
PSIF  
LD/  
fout  
PSRF  
0.1 µF  
Lock Detect  
Note : Clock, Data, LE : The schmitt trigger circuit is provided (insert a pull-down or pull-up registor  
to prevent oscillation when open-circuit in the input) .  
22  
 
MB15F74UV  
USAGE PRECAUTIONS  
(1) VCCRF and VCCIF must be equal voltage.  
Even if either RF-PLL or IF-PLL is not used, power must be supplied to VCCRF and VCCIF to keep them  
equal. It is recommended that the non-use PLL is controlled by power saving function.  
(2) To protect against damage by electrostatic discharge, note the following handling precautions :  
Store and transport devices in conductive containers.  
Use properly grounded workstations, tools, and equipment.  
Turn off power before inserting or removing this device into or from a socket.  
Protect leads with conductive sheet, when transporting a board mounted device  
ORDERING INFORMATION  
Part number  
MB15F74UVPVB  
Package  
Remarks  
18-pin plastic BCC  
(LCC-18P-M05)  
23  
 
MB15F74UV  
PACKAGE DIMENSION  
18-pin plastic BCC  
(LCC-18P-M05)  
2.31(.090)  
TYP  
2.70±0.10  
(.106±.004)  
0.45±0.05  
(.018±.002)  
0.45(.018)  
TYP.  
10  
15  
15  
10  
(Mount height)  
2.01(.079)  
TYP  
INDEX AREA  
2.40±0.10  
(.094±.004)  
0.90(.035)  
REF  
1.90(.075)  
REF  
"A"  
0.45(.018)  
TYP.  
"C"  
"B"  
0.075±0.025  
(.003±.001)  
(Stand off)  
1
6
1.35(.053)  
REF  
6
1
2.28(.090)  
REF  
Details of "A" part  
Details of "B" part  
C0.10(.004)  
Details of "C" part  
0.36±0.06  
0.05(.002)  
0.36±0.06  
(.014±.002)  
0.25±0.06  
(.010±.002)  
0.14(.006)  
MIN.  
(.014±.002)  
0.25±0.06  
0.28±0.06  
0.28±0.06  
(.010±.002)  
(.011±.002)  
(.011±.002)  
C
2003 FUJITSU LIMITED C18058S-c-1-1  
(
)
Dimensions in mm inches  
:
Note The values in parentheses are reference values.  
24  
 
MB15F74UV  
FUJITSU LIMITED  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
The information, such as descriptions of function and application  
circuit examples, in this document are presented solely for the  
purpose of reference to show examples of operations and uses of  
Fujitsu semiconductor device; Fujitsu does not warrant proper  
operation of the device with respect to use based on such  
information. When you develop equipment incorporating the  
device based on such information, you must assume any  
responsibility arising out of such use of the information. Fujitsu  
assumes no liability for any damages whatsoever arising out of  
the use of the information.  
Any information in this document, including descriptions of  
function and schematic diagrams, shall not be construed as license  
of the use or exercise of any intellectual property right, such as  
patent right or copyright, or any other right of Fujitsu or any third  
party or does Fujitsu warrant non-infringement of any third-party’s  
intellectual property right or other right by using such information.  
Fujitsu assumes no liability for any infringement of the intellectual  
property rights or other rights of third parties which would result  
from the use of information contained herein.  
The products described in this document are designed, developed  
and manufactured as contemplated for general use, including  
without limitation, ordinary industrial use, general office use,  
personal use, and household use, but are not designed, developed  
and manufactured as contemplated (1) for use accompanying fatal  
risks or dangers that, unless extremely high safety is secured, could  
have a serious effect to the public, and could lead directly to death,  
personal injury, severe physical damage or other loss (i.e., nuclear  
reaction control in nuclear facility, aircraft flight control, air traffic  
control, mass transport control, medical life support system, missile  
launch control in weapon system), or (2) for use requiring  
extremely high reliability (i.e., submersible repeater and artificial  
satellite).  
Please note that Fujitsu will not be liable against you and/or any  
third party for any claims or damages arising in connection with  
above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You  
must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for export  
of those products from Japan.  
F0401  
FUJITSU LIMITED Printed in Japan  
 

Earlex Paint Sprayer HV7000 User Manual
Ericsson Printer 4900 User Manual
Escient Switch LS102 User Manual
Field Controls Air Cleaner UV 16 24 User Manual
Firstech LLC Remote Starter FT MB164 DC User Manual
Fluke Slow Cooker Ti30 User Manual
FujiFilm Digital Camera 16410594 User Manual
FUNAI Flat Panel Television CWF20L6 User Manual
Furuno TV Cables FCV 522 User Manual
GE Air Conditioner AEM10 User Manual